首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract The Jurassic Tamba accretionary complex is divided into two tectono‐stratigraphic suites (Type I and II nappe groups), which are further divided into six complexes (nappes) each of which is characterized by a rock sequence of Late Paleozoic greenstone/limestone, Permian to Jurassic chert and Jurassic terrigenous clastic rocks. The mode of occurrence of the greenstone is divided into two types. The major basal type occurs as a large coherent slab associated with Permian chert and limestone, constituting the basal part of each complex, and the minor mixed type occurs as fragmented allochthonous greenstone blocks and lenses mixed with chert, limestone and sandstone in the Jurassic mudstone matrix. Most of the basal greenstones have uniform geochemical characteristics, which indicate enriched‐mid‐oceanic ridge basalt (MORB) affinity. Their geochemical compositions are akin to the reported Permo‐Carboniferous and Triassic oceanic plateau basalts. Mixed greenstones are divided into two petrochemical types: (i) tholeiitic basalt with normal‐MORB affinity, which is predominant in the uppermost complex of the Type II suite (upper nappe group); and (ii) tholeiitic and alkalic basalts of oceanic island or seamount origin, which are common in all complexes of the Tamba Belt. Geochemical characteristics of the greenstones thus vary in accordance with their occurrences and the structural units to which they belong. This relationship reflects the difference in topographic relief and crustal thickness of the accreted oceanic edifices – the remnants of thick oceanic plateau crust tended to accrete to the continental margin as a large basal greenstone body, whereas thin normal oceanic crust with small seamounts or oceanic islands accreted as mixed greenstones because of their mechanical weakness. The Type II suite (upper nappe group) contains the basal and mixed greenstones, whereas the Type I suite (lower nappe group) includes only mixed greenstones. This distinction may reflect the temporal change of subducting edifices from a thick oceanic plateau to a thin normal oceanic crust, and suggests that the accretion of a large oceanic plateau may be responsible for building accretionary complexes with thick basal greenstones slabs.  相似文献   

2.
Abstract   The Lower Sorachi Group of the Sorachi–Yezo Belt in central Hokkaido, Japan is a peculiar accretionary complex characterized by numerous occurrences of greenstones (metabasalts and diabases), which are mostly composed of aphyric basalts. Clinopyroxene-rich phenocryst assemblage in phyric basalts is different from olivine–plagioclase assemblage in mid-oceanic ridge basalts (MORB). The greenstones are geochemically uniform, and show a lower-Ti trend than MORB in an FeO*/MgO-TiO2 diagram, mostly plotting on the island arc tholeiite (IAT) field in a TiO2−10MnO−10P2O5 diagram. In a MORB-normalized spider diagram, the greenstones show a flat pattern from P to Y, which are lower than those of normal mid-oceanic ridge basalt (N-MORB). These indicate that the greenstones were derived by a higher degree of partial melting from a depleted mantle similar to a N-MORB source, and experienced olivine–clinopyroxene fractional crystallization. However, a positive spike of Nb in the spider diagram cannot be explained, and may be attributed to mantle heterogeneity. These characteristics are analogous to those of oceanic plateau basalts (OPB) such as in Ontong Java Plateau, Manihiki Plateau and Nauru Basin, suggesting that the greenstones in the Lower Sorachi Group are of oceanic plateau origin. The present study proposes new field divisions to distinguish OPB from MORB in the conventional FeO*/MgO–TiO2 and TiO2−10MnO−10P2O5 diagrams.  相似文献   

3.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply.  相似文献   

4.
Abstract Mélange units containing greenstones are common throughout the Cretaceous-Miocene Shimanto Supergroup in the Ryukyu Is and southwest Japan. Most greenstones in the accretionary complex originated in oceanic spreading ridges and seamounts, and they formed far from the convergent margin. Some mélange-like units in the supergroup, however, contain greenstones that were extruded upon and intruded into unconsolidated fine-grained terrigenous clastic sediments. It is inferred that eruption of the in situ greenstones resulted from igneous activity in the trench area. Geochemical signatures indicate that the greenstone protoliths were similar to mafic lavas generated at spreading ridges. Fossil ages of the strata containing in situ greenstones become younger over a distance of 1300 km eastward from Amami-Oshima (Cenomanian-Turonian) in the Ryukyu Is to central Japan (Late Maestrichtian-earliest Paleocene), implying that a site of igneous activity in the trench area migrated eastward along the Ryukyu Is and southwest Japan margin. Plate reconstructions of the northwest Pacific Ocean suggest the presence of the Kula-Pacific ridge near Late Cretaceous to early Paleogene Japan. In this context, it is suggested that the greenstones formed in response to Kula-Pacific ridge-forearc collision.
Ancient ridge-forearc collisions are best recognized by the presence of mid-ocean ridge basalt (MORB) extruded on sediments inferred to have accumulated in the trench area. Diachronous occurrences of the strata associated with these MORB in an orogenic belt are useful for documenting the ridge collision through time.  相似文献   

5.
Abstract Recent geological investigations of the Isua Supracrustal Belt (3.8 Ga), southern West Greenland, have suggested that it is the oldest accretionary complex on earth, defined by an oceanic plate‐type stratigraphy and a duplex structure. Plate history from mid‐oceanic ridge through plume magmatism to subduction zone has been postulated from analysis of the reconstructed oceanic plate stratigraphy in the accretionary complex. Comparison between field occurrence of greenstones in modern and ancient accretionary complexes reveals that two types of tholeiitic basalt from different tectonic settings, mid‐oceanic ridge basalt (MORB) and oceanic island basalt (OIB), occur. This work presents major, trace and rare earth element (REE) compositions of greenstones derived from Isua MORB and OIB, and of extremely rare relict igneous clinopyroxene in Isua MORB. The Isua clinopyroxenes (Cpx) have compositional variations equivalent to those of Cpx in modern MORB; in particular, low TiO2 and Na2O contents. The Isua Cpx show slightly light (L)REE‐depleted REE patterns, and the calculated REE pattern of the host magma is in agreement with that of Isua MORB. Analyses of 49 least‐altered greenstones carefully selected from approximately 1200 samples indicate that Isua MORB are enriched in Al2O3, and depleted in TiO2, FeO*, Y and Zr at the given MgO content, compared with Isua OIB. In addition, Isua MORB show an LREE‐depleted pattern, whereas Isua OIB forms a flat REE pattern. Such differences suggest that the Early Archean mantle had already become heterogeneous, depending on the tectonic environment. Isua MORB are enriched in FeO compared with modern MORB. Comparison of Isua MORB with recent melting experiments shows that the source mantle had 85–87 in Mg? and was enriched in FeO. Potential mantle temperature is estimated to be approximately 1480°C, indicating that the Early Archean mantle was hotter by at most approximately 150°C than the modern mantle.  相似文献   

6.
Yuji  Ichiyama  Akira  Ishiwatari  Kazuto  Koizumi  Yoshito  Ishida  Sumiaki  Machi 《Island Arc》2007,16(3):493-503
Abstract   Permian basalt showing typical spinifex texture with >10 cm-long olivine pseudomorphs was discovered from the Jurassic Tamba accretionary complex in southwest Japan. The spinifex basalt occurs as a river boulder accompanied by many ferropicritic boulders in a Permian chert-greenstone unit. Groundmass of this rock is holocrystalline, suggesting a thick lava or sill for its provenance. Minor kaersutite in the groundmass indicates a hydrous magma. The spinifex basalt, in common with the associated ferropicritic rocks, is characterized by high high field strength element (HFSE) contents (e.g. Nb = 62 ppm and Zr = 254 ppm) and high-HFSE ratios (Al2O3/TiO2 = 3.9, Nb/Zr = 0.24 and Zr/Y = 6.4) unlike typical komatiites. The spinifex basalt and ferropicrite might represent the upper fractionated melt and the lower olivine-rich cumulate, respectively, of a single ultramafic sill (or lava) as reported from the early Proterozoic Pechenga Series in Kola Peninsula. Their parental magma might have been produced by hydrous melting of a mantle plume that was dosed with Fe- and HFSE-rich garnet pyroxenite. The spinifex basalt is an evidence for the Pechenga-type ferropicritic volcanism taken place in a Permian oceanic plateau, which accreted to the Asian continental margin as greenstone slices in Jurassic time.  相似文献   

7.
Abstract   Fusulinoidean faunal succession from Paleo–Tethyan seamount-type carbonates of the Yutangzhai section in the Central zone of the Changning–Menglian Belt of West Yunnan, Southwest China, is presented for the first time. The Changning–Menglian Belt is one of the orogenic belts that represent the closed main Paleo–Tethys in East Asia. The Yutangzhai section is represented by basalts and overlying carbonates, about 1100 m thick. It exhibits a continuous faunal succession composed of 17 fusulinoidean assemblages ranging from the Serpukhovian (late Mississippian/late Early Carboniferous) to Midian/Capitanian (late Middle Permian/late Guadalupian). No significant faunal break can be recognized in this section. The generic and some specific composition of the Yutangzhai assemblages indicates that the faunal succession is similar to those observed in Tethyan and Panthalassan areas and is of tropical Tethyan type although their generic diversity is definitely lower than those of Paleo–Tethyan shelves, such as South China, Indochina, and Central Asia. Throughout the Yutangzhai section, the carbonate rocks are essentially massive, very pure in composition, and devoid of terrigenous siliciclastic inputs. These lithologic characters are identical to those observed in accreted shallow-marine carbonate successions of seamount origin in Permian and Jurassic accretionary complexes of Japan, for example the Akiyoshi Limestone. This evidence further demonstrates the seamount origin of the basalt–limestone succession in the Central zone of the Changning–Menglian Belt from the viewpoint of lithofacies. In middle Mississippian (middle Early Carboniferous) time, oceanic submarine volcanism that was probably related to hot spot activities formed a number of seamounts and oceanic plateaus. It was active not only in the Panthalassa, but also in the Paleo–Tethys.  相似文献   

8.
New inductively coupled plasma mass spectrometry (ICP-MS) trace element data are presented on a suite of arc lavas from the northern Mariana and southern Bonin island arcs. The samples were dredged from seamounts in the Central Island Province (CIP), the Northern Seamount Province (NSP) and the Volcano Arc (VA), and they range in composition from low-K tholeiites to shoshonites. Previous studies on these samples concluded that the primary compositional control was two-component mixing between a fluid-metasomatized mid-ocean ridge basalt (MORB) source and an enriched, ocean island basalt (OIB)-like, mantle component, with subducted sediment material playing a secondary role. However, the new trace element data suggest that the compositional variations along the Mariana arc can be better explained by the addition of spatially varying subduction components to a spatially varying mantle source. The data suggest that the subduction component in the CIP and VA is dominated by aqueous fluids derived from altered oceanic crust and a pelagic sediment component, while the subduction component in the NSP is dominated by more silicic fluids derived from volcanogenic sediments as well as from pelagic sediment and altered oceanic crust. The mantle wedge in the CIP and VA is depleted relative to a normal mid-ocean ridge basalt source by loss of a small melt fraction, while the mantle wedge in the NSP is enriched either by possible gain of a small melt fraction or addition of a sediment-derived melt. Because the subduction of seamounts controls the arc and back-arc geometries, so the concomitant variation between subducted material and mantle composition may be no coincidence. The high field strength element (HFSE) data indicate a high degree of melting (∼ 25–30%) throughout the arc, ∼ 10% of which may be attributed to decompression and ∼ 20% to fluid addition.  相似文献   

9.
A correlary of sea floor spreading is that the production rate of ocean ridge basalts exceeds that of all other volcanic rocks on the earth combined. Basalts of the ocean ridges bring with them a continuous record in space and time of the chemical characteristics of the underlying mantle. The chemical record is once removed, due to chemical fractionation during partial melting. Chemical fractionations can be evaluated by assuming that peridotite melting has proceeded to an olivine-orthopyroxene stage, in which case the ratios of a number of magmaphile elements in the extracted melt closely match the ratios in the mantle. Comparison of ocean ridge basalts and chondritic meteorites reveals systematic patterns of element fractionation, and what is probably a double depletion in some elements. The first depletion is in volatile elements and is due to high accretion temperatures of a large percentage of the earth from the solar nebula. The second depletion is in the largest, most highly charged lithophile elements (“incompatible elements”), probably because the mantle source of the basalts was melted previously, and the melt, enriched in these elements, was removed. Migration of melt relative to solid under ocean ridges and oceanic plates, element fractionation at subduction zones, and fractional melting of amphibolite in the Precambrian are possible mechanisms for depleting the mantle in incompatible elements. Ratios of transition metals in the mantle source of ocean ridge basalts are close to chondritic, and contrast to the extreme depletion of refractory siderophile elements, the reason for which remains uncertain. Variation of ocean ridge basalt chemistry along the length of the ridge has been correlated with ridge elevation. Thus chemically anomalous ridge segments up to 1000 km long appear to broadly coincide with regions of high magma production (plumes, hot spots). Basalt heterogeneity at a single location indicates mantle heterogeneity on a smaller scale. Variation of ocean ridge basalt chemistry with time has not been established, in fact, criteria for recognizing old oceanic crust in ophiolite terrains are currently under debate. The similarity of rare earth element patterns in basalt from ocean ridges, back-arc basins, some young island arcs, and some continental flood basalts illustrates the dangers of tectonic labeling by rare earth element pattern.  相似文献   

10.
Abstract Mesozoic accretionary complexes of the southern Chichibu and the northern Shimanto Belts, widely exposed in the Kanto Mountains, consist of 15 tectonostratigraphic units according to radiolarian biochronologic data. The units show a zonal arrangement of imbricate structure and the age of the terrigenous clastics of each unit indicates successive and systematic southwestward younging. Although rocks in these complexes range in age from Carboniferous to Cretaceous, the trench-fill deposits corresponding to the Hauterivian, the Aptian to Middle Albian and the Turonian are missing. A close relationship between the missing accretionary complexes and the development of strike-slip basins is recognizable. The tectonic nature of the continental margin might have resulted from a change from a convergent into a transform or oblique-slip condition, so that strike-slip basins were formed along the mobile zones on the ancient accretionary complexes. Most terrigenous materials were probably trapped by the strike-slip basins. Then, the accretion of the clastic rock sequence occurred, probably as a result of the small supply of terrigenous materials in the trench. However, in the case of right-angle subduction, terrigenous materials might have been transported to the trench through submarine canyons and deposited there. Thus, the accretionary complexes grew rapidly and thickened. Changes both in oceanic plate motion and in the fluctuation of terrigenous supply due to the sedimentary trap caused pulses of accretionary complex growth during Jurassic and Cretaceous times. In the Kanto Mountains, three tectonic phases are recognized, reflecting the changes of the consuming direction of the oceanic plates along the eastern margin of the Asian continent. These are the Early Jurassic to early Early Cretaceous right-angle subduction of the Izanagi Plate, the Early to early Late Cretaceous strike-slip movement of the Izanagi and Kula Plates, and the late Late Cretaceous right-angle subduction of the Kula Plate.  相似文献   

11.
The properties and tectonic significance of the fault bound zone on the northern margin of the Central Tianshan belt are key issues to understand the tectonic framework and evolutionary history of the Tianshan Orogenic Belt. Based on the geological and geochemical studies in the Tianshan orogenic belt, it is suggested that the ophiolitic slices found in the Bingdaban area represent the remaining oceanic crust of the Early Paleozoic ocean between the Hazakstan and Zhungaer blocks. Mainly composed of basalts, gabbros and diabases, the ophiolites were overthrust onto the boundary fault between the Northern Tianshan and Central Tianshan belts. The major element geochemistry is characterized by high TiO2 (1.50%–2.25%) and MgO (6.64%–9.35%), low K2O (0.06%–0.41%) and P2O5 (0.1%–0.2%), and Na2O>K2O as well. Low ΣREE and depletion in LREE indicate that the original magma was derived from a depleted mantle source. Compared with a primitive mantle, the geochemistry of the basalts from the Bingdaban area is featureded by depletion in Th, U, Nb, La, Ce and Pr, and unfractionated in HFS elements. The ratios of Zr/Nb, Nb/La, Hf/Ta, Th/Yb and Hf/Th are similar to those of the typical N-MORB. It can be interpreted that the basalts in the Bingdaban area were derived from a depleted mantle source, and formed in a matured mid-oceanic ridge setting during the matured evolutionary stage of the Northern Tianshan ocean. In comparison with the basalts, the diabases from the Bingdaban area show higher contents of Al2O3, ΣREE and HFS elements as well as unfractionated incompatible elements except Cs, Rb and Ba, and about 10 times the values of the primitive mantle. Thus, the diabases are thought to be derived from a primitive mantle and similar to the typical E-MORB. The diabases also have slight Nb depletion accompanying no apparent Th enrichment compared with N-MORB. From studies of the regional geology and all above evidence, it can be suggested that the diabases from the Bingdaban area were formed in the mid-oceanic ridge of the Northern Tianshan ocean during the initial spreading stage. Supported by the Major State Research Program of PRC (Grant No. 2001CB409801), the National Natural Science Foundation of China (Grant Nos. 40472115 and 40234041) and the State Research Program of China Geological Survey (Grant No. 2001130000-22)  相似文献   

12.
Greenstone bodies emplaced upon or into clastic sediments crop out ubiquitously in the Hidaka belt (early Paleogene accretionary and collisional complexes exposed in the central part of northern Hokkaido, NE Japan), but the timing and setting of their emplacement has remained poorly constrained. Here, we report new zircon U–Pb ages for the sedimentary complexes surrounding these greenstones. The Hidaka Supergroup in the northern Hidaka belt is divided into four zones from west to east: zones S, U, and R, which contain in situ greenstones; and zone Y, which does not. Detrital zircons in zones S, U, and R have early Eocene U–Pb ages (55–47 Ma) and these strata are intruded by early Eocene granites (46–45 Ma), indicating that they were deposited between 55 and 46 Ma. Therefore, in situ greenstones in the northern Hidaka belt can only be explained by the subduction of the Izanagi–Pacific Ridge during 55–47 Ma. In contrast, the deposition of zone Y (the Yubetsu Group, younging to the west) began by 73–71 Ma, indicating that the accretionary prism in front of the paleo-Kuril arc formed at the same time as that in the Idonnappu zone and grew continuously until 48 Ma. The plutonic rocks that intruded the Hidaka belt are roughly divided into three stages: (1) early Eocene granites intruded the northern Hidaka belt at 46–45 Ma, during subduction of the Izanagi–Pacific Ridge; (2) the upper sequence of the Hidaka metamorphic zone was metamorphosed by magmatism at 40–37 Ma associated with the collision of the paleo-Kuril arc and NE Asia; and (3) younger granites intruded the entire Hidaka belt at 20–17 Ma in association with asthenospheric upwelling caused by back-arc expansion.  相似文献   

13.
MAKOTO TAKEUCHI 《Island Arc》2011,20(2):221-247
Detrital chloritoids were extracted from the Lower Jurassic sandstones in the Joetsu area of central Japan. The discovery of detrital chloritoids in the Joetsu area, in addition to two previous reports, confirms their limited occurrence in the Jurassic strata of the Japanese islands. This finding emphasizes the importance of the denudation of chloritoid‐yielding metamorphic belts in Jurassic provenance evolution, in addition to a change from an active volcanic arc to a dissected arc that has already been described. Possible sources for the detrital chloritoids from the Jurassic sandstones are the Permo–Triassic chloritoid‐yielding metamorphic rocks distributed in dispersed tectonic zones (Hida, Unazuki, Ryuhozan and Hitachi Metamorphic Rocks), which are in fault contact with Permian to Jurassic accretionary complexes in the Japanese islands. This is because all of these pre‐Jurassic chloritoid‐yielding metamorphic rocks have a Carboniferous–Permian depositional age and a Permo–Triassic metamorphic age, whereas a Permian–Triassic metamorphic age on the Hitachi Metamorphic Rocks remains unreported. In addition, most metamorphic chloritoids imply a former stable land surface that has evolved into an unstable orogenic area. Therefore, the chloritoid‐yielding metamorphic rocks might form a continuous metamorphic belt originating from a passive continental margin in East Asia. Evidence from paleontological and petrological studies indicates that the Permo–Triassic metamorphic belt relates to a collision between the Central Asian Orogenic Belt and the North China Craton. The evolution of the Permian–Jurassic provenance of Japanese detrital rocks indicates that the temporal changes in detritus should result from sequences of collision‐related uplifting processes.  相似文献   

14.
Basement intersected in DSDP holes 525A, 528 and 527 on the Walvis Ridge consists of submarine basalt flows and pillows with minor intercalated sediments. These holes are situated on the crest and mid and lower northwest flank of a NNW-SSE-trending ridge block which would have closely paralleled the paleo mid-ocean ridge [13, 14]. The basalts were erupted approximately 70 m.y. ago, an age equivalent to that of immediately adjacent oceanic crust in the Angola Basin and consistent with formation at the paleo mid-ocean ridge [14]. The basalt types vary from aphyric quartz tholeiites on the ridge crest to highly plagioclase phyric olivine tholeiites on the ridge flank. These show systematic differences in incompatible trace element and isotopic composition. Many element and isotope ratio pairs form systematic trends with the ridge crest basalts at one end and the highly phyric ridge flank basalts at the other.The low 143Nd/144Nd (0.51238), 206Pb/204Pb (17.54), 208Pb/204Pb (15.47), 208Pb/204Pb (38.14) and high87Sr/86Sr (0.70512) ratios of the ridge crest basalts suggest derivation from an old Nd/Sm-, Rb/Sr- and Pb/U-enriched mantle source. This isotopic signature is similar to that of alkaline basalts on Tristan de Cunha but offset to significantly lower Nd and Pb isotopic ratios. The isotopic ratio trends may be extrapolated beyond the ridge flank basalts with higher143Nd/144Nd (0.51270), 206Pb/204Pb (18.32), 207Pb/204Pb (15.52), 208Pb/204Pb (38.77) and lower 87Sr/86Sr (0.70417) ratios in the direction of increasingly Nd/Sm-, Rb/Sr- and Pb/U-depleted source compositions. These isotopic correlations are equally consistent with mixing od depleted and enriched end member melts or partial melting of an inhomogenous, variably enriched mantle source. However, observe ZrBaNbY interelement relationships are inconsistent with any simple two-component model of magma mixing, as might result from the rise of a lower mantle plume through the upper mantle. Incompatible element and Pb isotopic systematics also preclude extensive involvement of depleted (N-type) MORB material or its mantle sources. In our preferred petrogenetic model the Walvis Ridge basalts were derived by partial melting of mantle similar to an enriched (E-type) MORB source which had become heterogeneous on a small scale due to the introduction of small-volume melts and metasomatic fluids.  相似文献   

15.
Lower Carboniferous lavas from the Midland Valley and adjacent regions of Scotland are mildly alkaline and intraplate in nature. The sequence is dominated by basalt and hawaiite, although mugearite, benmoreite, trachyte and rhyolite are also present. Basic volcanic rocks display the LIL element and LREE enrichment typical of intraplate alkali basalt terrains. Low initial87Sr/86Sr (0.7029–0.7046), high εNd (−0.4 to +5.6) and moderately radiogenic206Pb/204Pb (17.77–18.89) ratios are also comparable with alkali basalts from other continental rifts and oceanic islands.When the Carboniferous lavas are compared with subduction-related lavas of Old Red Sandstone age, erupted in and around the Midland Valley ca. 50 Ma earlier (at 410 Ma) remarkable similarities are apparent. Significant overlap occurs in Nd and Pb isotopic compositions. Sr isotopic compositions are, however, more radiogenic in the older subduction-related lavas. This, combined with high K and Rb concentrations in ORS lavas may be explained by the incorporation of a sediment component derived from the subducted slab, which by Lower Carboniferous times had been lost from the mantle source region by convection. A pronounced negative Nb anomaly in the ORS subduction-related lavas may be explained by the retention of a Nb-bearing phase in the mantle during hydrous melting of the mantle wedge above the subduction zone.Allowing for the effects of the added component from the subducted slab, there appears to be no necessity to invoke separate mantle source regions for the two suites of lavas: both may have been derived from chemically similar portions of mantle. If volcanic arc lavas are derived from the mantle wedge, the implication is that such a source lies at relatively shallow depth within the upper mantle: the same may therefore apply to the Carboniferous continental rift basalts. This evidence, combined with the fact that there is no evident hot-spot trail across the Midland Valley despite a long period of within-plate volcanism and rapid plate movements during the Carboniferous, suggests that the alkali basalt magmatism is not the product of a deep-seated mantle plume. Rather, the volcanism appears to owe more to passive rifting and to diapiric upwelling from a source region within the uppermost mantle.  相似文献   

16.
Orogenic lherzolites allow for almost “in-situ” observation of mantle isotopic heterogeneities on a restricted geographical scale, in contrast to basalts for which melting processes have averaged original mantle compositions over uncertain scales. Pb isotopes from whole rocks and clinopyroxenes from the massifs of Lherz (Pyrenees), Lanzo (Alps), Beni Bousera (Morocco) and Zabargad (Red Sea) show internal heterogeneities that encompass the entire range of variation observed in oceanic basalts. Some depleted lherzolites have a very unradiogenic composition similar to that of the most depleted ridge tholeiites. Pyroxenites from mafic layers generally have more radiogenic compositions, some of them comparable to the most radiogenic oceanic island results. The isotopic differences between lherzolites and pyroxenites vanish where layers are very closely spaced ( < 2 cm). In this case, the lherzolites may have equilibrated with the more Pb-rich pyroxenites through solid-state diffusion under mantle conditions. These results directly illustrate the smallest scales at which Pb isotopic heterogeneity may survive within the mantle.The genesis of these heterogeneities are discussed within the framework of the “marble cake” mantle model [1], where lherzolites are residues left over after oceanic crust extraction, whereas pyroxenites represent either basaltic or cumulate portions of the oceanic crust, reinjected by subduction and stretched by solid-state mixing during mantle convection. The Pb isotope data suggest that each massif was involved in several cycles of convective overturn, segregation and reinjection of the oceanic crust, during periods well over 1 Ga.If the upper mantle is made of interlayered radiogenic and unradiogenic layers, basalt heterogeneities may result from preferential melt-extraction from different layers depending on the degree of melting, as well as from large-scale, plume-related mantle heterogeneities. Orogenic lherzolites therefore allow direct observation of disseminated small-scale heterogeneities previously inferred from observations of oceanic basalts from seamounts and ridges.  相似文献   

17.
This review paper presents recent research on electrical conductivity structure in various marine tectonic settings. In at least three areas, marine electromagnetic studies for structural exploration have increasingly progressed: (1) data accumulations, (2) technical advances both for hardware and software, and (3) interpretations based on multidisciplinary approaches. The mid-ocean ridge system is the best-studied tectonic setting. Recent works have revealed evidence of conductive zones of hydrothermal circulation and axial magma chambers in the crust and partial melt zones of the mid-ocean ridge basalt source in the mantle. The role of water or dissolved hydrogen and its redistribution at mid-ocean ridges is emphasized for the conductivity pattern of the oceanic lithosphere and asthenosphere. Regions of mantle upwelling (hotspot or plume) and downwelling (subducting slab) are attracting attention. Evidence of heterogeneity exists not only in the crust and the upper mantle, but also in the mantle transition zone. Electrical conductive zones frequently overlap seismic low-velocity zones, but discrepancies are also apparent. Some studies have compared conductivity models with the results of seismic and other studies to investigate the physical properties or processes. A new laboratory-based conductivity model for matured oceanic lithosphere and asthenosphere is proposed. It takes account of both the water distribution in the mantle as well as the thermal structure. It explains observed conductivity patterns in the depth range of 60–200 km.  相似文献   

18.
Abstract   The Oka Belt, composed of clastic rocks and greenschists, extends for approximately 600 km in the South-Siberian Sayan region and adjacent northern Mongolia. For a long time the Oka Belt's age and tectonic setting were the most controversial problem in the region. We argue that the belt was formed in Late Neoproterozoic as an accretionary prism. The Oka Belt shows imbricated thrust structure, which had originally seaward vergence and reflected the Neoproterozoic accretion process. The Early Paleozoic orogeny had minor effect on its structural style. The belt contains tectonic slivers of mid-ocean ridge basalts, some oceanic-island basalts and possible pelagic sediments. In several localities they are associated with gabbro and serpentinite. All these rocks represent the oceanic lithosphere subducting beneath the Oka prism and trapped within it. In the inner zone of the Oka Belt are the blueschists exhumed from the deeper prism level. The northern Oka Belt includes mafic intrusions geochemically similar to normal mid-oceanic ridge basalt and felsic volcaniclastic rocks. This segment of the belt is very similar to the Tertiary portion of northern Shimanto Belt, in Japan, and has also experienced the subduction of orthogonal oceanic ridge beneath the prism. This event dates back to 753 ± 16 Ma (the U-Pb zircon discordia). The Oka prism started accreting in Mid-Neoproterozoic after the subduction had initiated under the Japan-like South-Siberian continental terrain. The prism existed through the second half of Neoproterozoic and accumulated a huge volume of sialic material to enlarge the nearby continent. Currently, the Oka Belt remains poorly studied and is very promising for further investigation and discoveries.  相似文献   

19.
A model is proposed for the origin of hot spots that depends on the existence of major-element heterogeneities in the mantle. Generation of basaltic crust at spreading centers produces a layer of residual peridotite ~20–25 km thick directly beneath the crust which is depleted in Fe/Mg, TiO2, CaO, Al2O3, Na2O and K2O, and which has a slightly lower density than undepleted peridotite beneath it. Upon recycling of this depleted peridotite back into the deep mantle at subduction zones, it becomes gravitationally unstable, and tends to rise as diapirs through undepleted peridotite. For a density contrast of 0.05 g cm?3, a diapir 60 km in diameter would rise at roughly 8 cm y?1, and could transport enough heat to the base of the lithosphere to cause melting and volcanism at the surface. Hot spots are thus viewed as a passive consequence of mantle convection and fractionation at spreading centers rather than a plate-driving force.It is suggested that depleted diapirs exist with varying amounts of depletion, diameters, upward velocities and source volumes. Such variations could explain the occurrence of hot spots with widely varying lifetimes and rates of lava production. For highly depleted diapirs with very low Fe/Mg, the diapir would act as a heat source and the asthenosphere and lower lithosphere drifting across the diapir would serve as the source region of magmas erupted at the surface. For mildly depleted diapirs with Fe/Mg only slightly less than in normal undepleted mantle, the diapir could provide not only the source of heat but also most or all of the source material for the erupted magmas. The model is consistent with isotopic data that require two separate and ancient source regions for mid-ocean ridge and oceanic island basalts. The source for mid-ocean ridge basalts is considered to be material upwelling at spreading centers from the deep mantle. This material forms the oceanic lithosphere. Oceanic island basalts are considered to be derived from varying mixtures of sublithospheric and lower lithospheric material and the rising diapir itself.  相似文献   

20.
Variations in the isotopic composition of rocks derived from the upper mantle can be used to infer the chemical history and structure of the Earth's interior. The most prominent material in the upper mantle is the source of mid-ocean ridge basalts (MORB). The MORB source is characterized by a general depletion in incompatible elements caused by the extraction of the continental crust from the mantle. At least three other isotopically distinct components are recognized in the suboceanic mantle. All three could be generated by the recycling of near surface materials (oceanic crust, pelagic sediments, continental lithospheric mantle) into the mantle by subduction. Therefore, the isotope data do not require a compositionally layered mantle, but neither do they deny the existence of such layering. Correlations between the volumetric output of plume volcanism with the reversal frequency of the Earth's magnetic field, and between the geographic distribution of isotopic variability in oceanic volcanism with seismic tomography suggest input of deep mantle material to surface volcanism in the form of deep mantle plumes. Volcanism on the continents shows a much wider range in isotopic composition than does oceanic volcanism. The extreme isotopic compositions observed for some continental magmas and mantle xenoliths indicate long-term (up to 3.3 Gyr) preservation of compositionally distinct material in thick (>200 km) sections of continental lithospheric mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号