首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
主要针对梁腹板带有摩擦耗能螺栓的自复位钢框架节点结构进行抗震性能和可更换性能的试验研究,探讨该类节点在往复荷载作用下的滞回性能以及节点域的变形特征。在参数选型的基础上,对5组钢框架节点试件进行了低周反复荷载作用下的拟静力试验,其中:4组试件具有自复位能力,分析了各试件的承载力、刚度、耗能性能和滞回特性等性能。综合研究结果表明:所提出的拼接节点能够利用摩擦螺栓的滑移提高节点的耗能能力,有效减少梁和柱主体构件的损伤,同时预应力筋提供了结构的自复位能力。试验结果表明:在地震作用之后,通过更换腹板及摩擦螺栓可以使结构的承载能力和耗能性能与震前基本一致,从而实现结构功能的快速恢复。  相似文献   

2.
This paper presents an experimental study on the performance of a shear-sliding stud-type damper composed of multiple friction units with high-tension bolts and disc springs. A numerical evaluation of the response reduction effects achieved by the stud-type damper is also presented. In dynamic loading tests, the behavior of stud-type multiunit friction damper specimens was investigated. Three different full-scale damper specimens, which were composed of five, six, or seven friction units with two or four sliding surfaces, were incorporated into loading devices for testing. The stud-type friction dampers demonstrated stable rigid-plastic hysteresis loops without any remarkable decrease in the sliding force even when subjected to repetitive loading, in addition to showing no unstable behavior such as lateral buckling. The damper produced a total sliding force approximately proportional to the number of sliding surfaces and friction units. The total sliding force of the stud-type damper can thus be estimated by summing the contributions of each friction unit. In an earthquake response simulation, the control effects achieved by stud-type dampers incorporated into an analytical high-rise building model under various input waves, including long-period, long-duration and pulse-like ground motions, were evaluated. A satisfactory response reduction was obtained by installing the developed stud-type dampers into the main frame without negatively impacting usability and convenience in terms of building planning.  相似文献   

3.
Hysteresis steel dampers are widely used in earthquake-resistant structures, where some of them are anisotropic and capable of sustaining earthquake-induced bidirectional deformation. In this paper, a simplified analytical model is proposed for simulating the hysteretic behavior of U-shaped steel dampers with horizontal bidirectional deformation. The proposed model is composed of a series of shear springs with different nonlinear characteristics in a radial configuration, and the Menegotto–Pinto hysteresis model is employed to represent the hysteretic characteristics of the springs. The mechanical and shape-related parameters of the hysteresis model are set according to the multi-directional deformation characteristics of steel dampers. With the aim of validating the effectiveness and applicability of the analytical model, a U-shaped steel damper was used as an example. The pseudo-static hysteretic characteristics of the steel damping element were analyzed and the elasto-plastic seismic response of a curved bridge featuring a steel hysteresis device was investigated. The results showed that the proposed model is sufficiently accurate to simulate the hysteretic behavior of U-shaped steel dampers, and thus provides a practical method to assess U-shaped steel dampers through seismic response analysis.  相似文献   

4.
内藏X形软钢板铅复合耗能器的力学性能及减震分析   总被引:1,自引:0,他引:1  
在内藏X形软钢板铅复合耗能器和软钢耗能器低周反复荷载试验研究基础上,进行了理论分析,理论计算滞回曲线与实测滞回曲线吻合较好。建议了恢复力模型。将内藏X形软钢板铅复合耗能器应用到了悬挂减震结构中,进行了地震反应时程计算分析,计算结果表明,装有内藏X形软钢板铅复合耗能器的结构具有良好的减震性能。  相似文献   

5.
铅橡胶复合阻尼器的性能试验研究   总被引:4,自引:0,他引:4  
介绍作者提出的铅橡胶复合阻尼器的构造与耗能原理,通过不同形状,不同大小铅心的8个铅橡胶复合阻尼器的循环荷载试验,研究了频率、应变幅值、循环次数、铅芯直径、竖向压力等对铅橡胶复合阻尼器的影响规律。研究结果表明,铅橡胶复合阻尼器工作性能稳定,耗能性能和抗疲劳性能好。  相似文献   

6.
A new type of bracing system composed of friction energy dissipation devices for energy dissipation, pre‐pressed combination disc springs for self‐centering and tube members as guiding elements is developed and experimentally studied in this paper. The mechanics of this system are explained, the equations governing its hysteretic responses are outlined and large‐scale validation tests of two braces with different types of disc springs are conducted under the condition of low cyclic reversed loading. The experimental results demonstrate that the proposed bracing system exhibits a stable and repeatable flag‐shaped hysteretic response with an excellent self‐centering capability and effective energy dissipation throughout the loading protocol. Furthermore, the maximum bearing force and stiffness are predicted well by the equations governing its mechanical behavior. Fatigue and destructive test results demonstrate that the proposed bracing system can maintain stable energy dissipation and self‐centering capabilities under large deformation cyclic loading even when the tube members exceed the elastic limit and that a larger bearing capacity is achieved by the system that has disc springs without a bearing surface. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Isolation bearings and dampers are often installed between piers and superstructures to reduce the seismic responses of bridges under large earthquakes. This paper presents a novel steel damper for bridges. The damper employs steel plates as energy dissipation components, and adopts a vertical free mechanism to achieve a large deformation capacity. Quasi-static tests using displacement-controlled cyclic loading and numerical analyses using a finite element program called ABAQUS are conducted to investigate the behavior of the damper, and a design methodology is proposed based on the tests and numerical analyses. Major conclusions obtained from this study are as follows:(1) the new dampers have stable hysteresis behavior under large displacements;(2) finite element analyses are able to simulate the behavior of the damper with satisfactory accuracy; and(3) simplified design methodology of the damper is effective.  相似文献   

8.
菱形开洞软钢阻尼器及其在结构减震中的模拟分析   总被引:1,自引:0,他引:1  
提出了菱形开洞加劲软钢阻尼器及其在整体结构中的数值模拟方法,并据此对菱形开洞软钢阻尼器的循环加载试验以及安装阻尼器的钢框架结构的震动台试验进行了模拟分析。验证了使用AN-SYS有限元程序进行数值模拟分析的可行性和准确性,同时证明了菱形开洞软钢阻尼器具有良好的滞回性能,在整体结构中能够达到较好的减震效果。  相似文献   

9.
This paper evaluates the hysteretic behavior of an innovative compressed elastomer structural damper and its applicability to seismic‐resistant design of steel moment‐resisting frames (MRFs). The damper is constructed by precompressing a high‐damping elastomeric material into steel tubes. This innovative construction results in viscous‐like damping under small strains and friction‐like damping under large strains. A rate‐dependent hysteretic model for the compressed elastomer damper, formed from a parallel combination of a modified Bouc–Wen model and a non‐linear dashpot is presented. The model is calibrated using test data obtained under sinusoidal loading at different amplitudes and frequencies. This model is incorporated in the OpenSees [17] computer program for use in seismic response analyses of steel MRF buildings with compressed elastomer dampers. A simplified design procedure was used to design seven different systems of steel MRFs combined with compressed elastomer dampers in which the properties of the MRFs and dampers were varied. The combined systems are designed to achieve performance, which is similar to or better than the performance of conventional steel MRFs designed according to current seismic codes. Based on the results of nonlinear seismic response analyses, under both the design basis earthquake and the maximum considered earthquake, target properties for a new generation of compressed elastomer dampers are defined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
提出一种带可更换软钢阻尼器的低损伤自复预制混凝土(LDSCPC)框架节点,并针对该节点在地震作用下的抗震性能、更换阻尼器后的性能恢复等开展足尺试件的拟静力试验。在节点试验基础上,基于ABAQUS精细化有限元模型进行该节点关于螺栓预紧力、水平和竖向耗能条尺寸的参数化分析及优化设计。研究表明,软钢阻尼器LT12的滞回特性和承载能力是最优异的,而LT14是耗能最好的;增加阻尼器耗能条的尺寸和厚度能分别提高LDSCPC框架节点在加载早期和变形较大时的耗能性能。较大的螺栓预紧力能明显提升LDSCPC框架节点的耗能能力,当预紧力为155 kN时,软钢阻尼器几乎达到理想的耗能性能。  相似文献   

11.
两类铅阻尼器试验研究   总被引:9,自引:0,他引:9  
在研制一套具有竖向耗能能力的抗倾覆装置过程中,针对该装置对阻尼器的要求,设计了两种铅阻尼器,铅剪切阻尼器和钢铅组合耗能器。为了了解两种阻尼器的力学性能,对这两种铅阻尼器分别进行了静力加载、静力反复荷载、动力性能实验以及MTS实验。实验分析结果表明,这两类阻尼器工艺简单,滞回环较为丰满,均能达到位移小阻尼力大、耗能稳定的目的,符合装置要求,适合于在工程中广泛应用。  相似文献   

12.
下翼缘摩擦式自定心钢框架梁柱节点抗震性能的数值模拟   总被引:2,自引:0,他引:2  
宋良龙  郭彤 《地震学刊》2011,(6):648-653
介绍了一种新型的铜框架梁柱节点形式,其中预应力钢绞线提供了结构在地震作用下的复位功能(自定心),设置在梁端下翼缘的摩擦件则为结构提供了耗能能力;介绍了下翼缘摩擦式自定心钢框架粱柱节点的构造和工作原理,以节点的低用反复加载试验结果为依据,利用面向对象的开放式计算程序OpenSees建立了节点的数值模型,并侧重于模拟节点在地震作用下的张开/闭合、自定心、摩擦耗能以及螺栓受剪等特性。由计算结果与试验结果对比可知,所建立的数值模型对节点的抗震性能具有良好的模拟效果。  相似文献   

13.
This study proposes a novel mild steel damper with non-uniform vertical slits. The infl uence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.  相似文献   

14.
SMA复合摩擦阻尼器性能的试验研究   总被引:3,自引:0,他引:3  
利用形状记忆合金(SMA)的超弹性效应及高阻尼性能,结合传统Pall摩擦型阻尼器的特点,提出了一种SMA复合摩擦阻尼器。在建立阻尼器力学分析模型的基础上,对SMA复合摩擦阻尼器的性能进行了试验研究,分析了位移幅值、加载频率等对阻尼器的等效刚度、单位循环耗能和等效阻尼比的影响,并与理论分析结果进行了对比。研究表明,SMA复合摩擦阻尼器在加卸载循环下会形成比较稳定的滞回曲线,表明这种阻尼器具有良好的耗能能力。  相似文献   

15.
It is not common to purposely subject the web of wide‐flange or I‐sections to out‐of‐plane bending. However, yielding the web under this loading condition can be a stable source of energy dissipation as the transition at the corner from the web to the flanges is smooth and weld‐free; this prevents stress concentrations causing premature failure and eliminates uncertainties and imperfections associated with welding. Further, short segments of wide‐flange or I‐sections constitute a simple and inexpensive energy dissipating device as minimum manufacturing is required and leftovers not useful for other structural purposes can be re‐utilized. This paper proposes a new type of seismic damper in the form of braces based on yielding the web of short length segments of wide‐flange or I‐shaped steel sections under out‐of‐plane bending. The hysteretic behavior and ultimate energy dissipation capacity is investigated via component tests under cyclic loads. The experimental results indicate that the damping device has stable restoring force characteristics and a high energy dissipation capacity. Based on these results, a simple hysteretic model for predicting the load–displacement curve of the seismic damper is proposed, along with a procedure for predicting its ultimate energy dissipation capacity and anticipating its failure under arbitrarily applied cyclic loads. The procedure considers the influence of the loading path on the ultimate energy dissipation capacity. Finally, shaking table tests on half‐scale structures are conducted to further verify the feasibility and effectiveness of the new damper, and to assess the accuracy of the hysteretic model and the procedure for predicting its failure. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Past experimental studies have shown that existing precast segmental concrete bridge columns possess unsatisfactory hysteretic energy dissipation capacity, which is an undesirable feature for applications in seismic regions. In this research, we propose new methods of precast segment construction for tall concrete bridge columns to enhance the columns' hysteretic energy dissipation capacity and lateral strength. This is accomplished by adding bonded mild steel reinforcing bars across the segment joints, strengthening the joint at the base of the column and increasing the height of the base segment (hinge segment). Four large‐scale column specimens were fabricated and tested with lateral cyclic loading in the laboratory. Each specimen consisted of a foundation and 9 or 10 precast column segments. Test results of specimens with the proposed design concepts showed ductile behavior and satisfactory hysteretic energy dissipation capacity. In addition to the experimental study, an analytical study using the finite element method was conducted to understand the bond conditions, strain contours and deformation patterns of the specimens tested. Good agreement was found between the experimental observations and the results of the calibrated analytical study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
利用形状记忆合金(Shape Memory Alloy,简称"SMA")丝材的超弹性与复位弹簧特性,开发出一种新型变形可恢复SMA阻尼器,以增强其变形可恢复的能力。同时,为了解决SMA丝材在实际工程中锚固难的问题,提出了一种新型可调节夹具,不仅解决了SMA丝材的不易锚固问题,而且增强了调节预应变的能力。对所提出的新型SMA阻尼器进行了循环加载试验研究和数值仿真分析,探讨不同加载频率及位移幅值对其力学性能的影响,建立了恢复力模型。结果表明:新型SMA阻尼器在循环荷载作用下滞回性能稳定,具有良好的耗能性能;内置弹簧对新型SMA阻尼器变形可恢复能力有较大帮助。基于所建立恢复力模型的数值模拟结果与试验结果符合情况很好,验证了阻尼器恢复力力模型的正确性。  相似文献   

18.
基于带粘弹性阻尼器钢框架结构振动台试验,提出了基于OpenSees的阻尼器尺寸选择方法。首先,通过试验获得一种特定尺寸阻尼器的滞回曲线,根据粘弹性阻尼器相似理论,将其转换为一系列不同尺寸的阻尼器滞回曲线。使用Bouc-Wen模型对它们进行参数识别并添加到结构分析模型中,利用OpenSees软件对添加阻尼器结构和纯框架结构进行不同水准的3条地震波下动力时程分析。最后,通过综合考查阻尼器的减震效果和最大应变来确定合适的用于振动台试验当中的阻尼器尺寸。结果表明,本方法可避免对不同尺寸阻尼器逐个进行性能试验,Bouc-Wen模型可较准确地模拟阻尼器力学性能,OpenSees非线性动力时程分析可准确模拟试验过程,根据提出的选择指标能简单方便地确定阻尼器的尺寸。  相似文献   

19.
考虑到多维地震输入对网架结构的不利影响,基于形状记忆合金超弹性,研制出一种兼具自复位、高耗能及放大功能于一体的形状记忆合金复合黏滞阻尼器(Hybrid Shape Memory Alloy Viscous Dampers,简称HSMAVD),并通过试验研究该阻尼器在循环荷载作用下的力学性能;然后以平面四角锥网架模型为基础,将该阻尼器替换部分网架结构杆件,并分析该阻尼器减震控制效果。结果表明形状记忆合金与黏滞阻尼器复合后具有良好的协同工作能力,可有效发挥形状记忆合金的超弹性和黏滞阻尼器的速度相关特性,使其具有稳定的滞回性能和良好的耗能能力;采用阻尼杆件替换原杆件的方法既能对结构进行有效的减震控制,又不改变原有的结构形式,是一种优越的减震控制方法,并为HSMAVD被动控制系统在结构抗震中的实际应用提供新思路。  相似文献   

20.
为研究附设黏滞阻尼器的传统风格建筑混凝土梁-柱节点地震损伤演化规律,进行6个该类型构件的动力荷载试验,并分别采用位移型、能量型及位移-能量混合型损伤模型对其进行全过程评价,采用Park-Ang模型分析试件黏滞阻尼器型号、试件类型等因素对混凝土传统风格建筑梁柱节点损伤行为的影响。研究结果表明:附设黏滞阻尼器可显著提升传统风格建筑节点的承载能力、延性性能及耗能能力,结构的抗震性能得到较大幅度的提升;Park-Ang损伤模型与Banon损伤模型适用于传统风格建筑节点损伤演化规律的描述,建议对该类型节点的损伤规律表征选用该损伤模型。黏滞阻尼器型号可在一定程度上影响传统风格建筑的损伤演化发展;设计阻尼力大的试件虽然延性有所提高,但受荷过程中累积损伤也较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号