首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Vertical vibration of an embedded rigid foundation in a poroelastic soil   总被引:4,自引:0,他引:4  
This paper considers time-harmonic vertical vibration of an axisymmetric rigid foundation embedded in a homogeneous poroelastic soil. The soil domain is represented by a homogeneous poroelastic half space that is governed by Biot's theory of poroelastodynamics. The foundation is subjected to a time-harmonic vertical load and is perfectly bonded to the surrounding half space. The contact surface can be either fully permeable or impermeable. The dynamic interaction problem is solved by employing an indirect boundary integral equation method. The kernel functions of the integral equation are the influence functions corresponding to vertical and radial ring loads, and a ring fluid source applied in the interior of a homogeneous poroelastic half space. Analytical techniques are used to derive the solution for influence functions. The indirect boundary integral equation is solved by using numerical quadrature. Selected numerical results for vertical impedance of rigid foundations are presented to demonstrate the influence of poroelastic effect, foundation geometry, hydraulic boundary condition along the contact surface and frequency of excitation.  相似文献   

2.
The dynamic response of contacting fluid and fluid-saturated poroelastic half- spaces to a time-harmonic vertical point force or a point pore pressure is investigated. The solutions are formulated using the boundary conditions at the fluid-porous medium interface. The point load solutions are then used to solve the dynamic problem of the vertical vibration of a rigid disc (both permeable and impermeable discs are included) on the surface of the poroelastic half-space. The contact problems are solved by integrating the point force and point pore pressure solutions over the contact area with unknown discontinuous force and pore pressure distributions, which are determined from the boundary conditions. The solutions are expressed in terms of dual integral equations, which are converted to Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the vertical dynamic compliance coefficient for the cases with or without fluid overlying the poroelastic half-space are presented to show the effects of the fluid. The influence of the permeability condition of the disc on the compliance of the poroelastic half-space is investigated. The displacement, vertical stress, pore pressure in the poroelastic half-space and water pressure in the fluid half-space are also examined for different poroelastic materials and frequencies of excitation. The present results are helpful in the study of the dynamic response of foundations on the seabed under seawater.  相似文献   

3.
In a finite element formulation for dynamic soil-structure interaction, an absorbing boundary condition is needed to model wave propagation towards infinity. When the soil is saturated, its dynamic behaviour can be modelled by means of Biot's poroelastic theory. In Part I (Degrande, G. & De Roeck, G., Soil Dynamics & Earthquake Eng., 1993, 12(7), 411-21), a local absorbing boundary condition for wave propagation in saturated poroelastic media has been developed. In the present paper, this boundary condition is implemented in an irreducible finite element formulation for a compressible pore fluid. Spurious reflections for oblique incident waves on the absorbing boundary contribute to the solution errors. Therefore, a spectral element method, based on classical analytical solution techniques, is used to assess the accuracy of the finite element formulation.  相似文献   

4.
The dynamic response of a tunnel buried in a two-dimensional poroelastic soil layer subjected to a moving point load was investigated theoretically. The tunnel was simplified as an infinite long Euler–Bernoulli beam, which was placed parallel to the traction-free ground surface. The saturated layer was governed by Biot’s theory. Combined with the specified boundary conditions along the beam and saturated poroelastic layer, the coupled equations of the system were solved analytically in the frequency–wavenumber domain based on Fourier transform. The time domain responses were obtained by the fast inverse Fourier transform. The critical velocity of the considered structure was determined from the dispersion curves. The different dynamic characteristics of the elastic soil medium and the saturated poroelastic medium subjected to the underground moving load were investigated. It is concluded that, for coarse materials or fine materials subjected to the high-velocity loading, models ignoring the coupling effects between the pore fluid and the soil skeleton may cause errors. The shear modulus and the permeability coefficients of the saturated soil as well as the load moving velocity had significant influence on the displacement and pore pressure responses.  相似文献   

5.
Soil–structure interaction problems are typically modelled by assuming subgrade behaviour to be either elastic or viscoelastic. Herein, compliance functions that may be used to solve soil–structure interaction problems are evaluated by treating the subgrade as a liquid-saturated poroelastic material whose behaviour is governed by Biot's theory. The compliances are evaluated for the harmonic rocking and vertical motions of rigid permeable and impermeable plates bearing on a poroelastic halfspace. Comparisons are made with elastic solutions which assume the subgrade to be either completely drained or undrained. Also, solid and fluid contact stresses are reported for the poroelastic case and compared to the solid contact stresses for the elastic cases.  相似文献   

6.
A half‐space finite element and a transmitting boundary are developed for a water‐saturated layered half‐space using a paraxial boundary condition. The exact dynamic stiffness of a half‐space in plane strain is derived and a second‐order paraxial approximation of the stiffness is obtained. A half‐space finite element and a transmitting boundary are then formulated. The development is verified by comparison of the dynamic stiffness of impermeable and permeable rigid strip foundations with other published results. The advantage of using the paraxial boundary condition in comparison with the rigid boundary condition is examined. It is shown that the paraxial boundary condition offers significant gain and the resulting half‐space finite element and transmitting boundary can represent the effects of a water‐saturated layered half‐space with good accuracy and efficiency. In addition, the numerical method described herein maintains the strengths and advantages of the finite element method and can be easily applied to demanding problems of soil–structure interaction in a water‐saturated layered half‐space. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The permeability of river beds is an important control on hyporheic flow and the movement of fine sediment and solutes into and out of the bed. However, relatively little is known about the effect of bed permeability on overlying near‐bed flow dynamics, and thus on fluid advection at the sediment–water interface. This study provides the first quantification of this effect for water‐worked gravel beds. Laboratory experiments in a recirculating flume revealed that flows over permeable beds exhibit fundamental differences compared with flows over impermeable beds of the same topography. The turbulence over permeable beds is less intense, more organised and more efficient at momentum transfer because eddies are more coherent. Furthermore, turbulent kinetic energy is lower, meaning that less energy is extracted from the mean flow by this turbulence. Consequently, the double‐averaged velocity is higher and the bulk flow resistance is lower over permeable beds, and there is a difference in how momentum is conveyed from the overlying flow to the bed surface. The main implications of these results are three‐fold. First, local pressure gradients, and therefore rates of material transport, across the sediment–water interface are likely to differ between impermeable and permeable beds. Second, near‐bed and hyporheic flows are unlikely to be adequately predicted by numerical models that represent the bed as an impermeable boundary. Third, more sophisticated flow resistance models are required for coarse‐grained rivers that consider not only the bed surface but also the underlying permeable structure. Overall, our results suggest that the effects of bed permeability have critical implications for hyporheic exchange, fluvial sediment dynamics and benthic habitat availability. © 2017 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

8.
Confined flow of ground water through a tunnel, which might be encountered in tunneling under the bottom of a sea or river, is numerically analyzed by a reductive finite element method formulated in our research. That is, the rate and potential distribution of the confined flow of ground water through an opening are obtained in connection with the permeability of rock masses, the thickness of covered ground, the location of impermeable bedrock, and other variables. In addition, flow through an opening in the ground with highly permeable masses and discharge of ground water through a tunnel in grouted masses are illustrated, and some useful results for the practical application of tunneling work are obtained.  相似文献   

9.
This paper examines the ground subsidence caused by the uniform extraction of fluids from a disc-shaped region located within a poroelastic halfspace. Biot’s theory of poroelasticity is used to examine the problem. The fluid extraction over the circular region at the interior of the poroelastic domain induces time-dependent axisymmetric surface settlements. The theoretical results are also used to examine the accuracy of a multi-physics computational scheme that can be used to examine more complex geological settings.  相似文献   

10.
A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart–Thomas–Nedelec and higher order Brezzi–Douglas–Marini[9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.  相似文献   

11.
Large deformations that accompany longwall mining result in complex spatial and temporal distributions of changes in undrained pore fluid pressures around the advancing face. These seemingly anomalous changes are recorded in the rapid water level response of undermined and adjacent wells, and may be explained in the short-term as a undrained poroelastic effect. A three-dimensional finite element model is applied to define anticipated pore fluid response both around the advancing mining face, at depth, and in the near surface region. The results are carefully verified against the response recorded at three well-instrumented longwall sites. Pore pressure changes are indexed directly to volumetric strains defining zones of significant depressurization in the caving zone and in zones of extension adjacent to the subsidence trough on the ground surface. Overpressurization occurs in the abutment region, at panel depth, and in the surface compressive zone immediately inside the angle-of-draw. These results are confirmed with available, short-term water level response data, defining the strongly heterogeneous spatial response and the significance of well depth on anticipated water level response.  相似文献   

12.
The indirect boundary element method(IBEM) is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluidsaturated poroelastic medium. Based on this method, the free field and scattered field can be solved according to the boundary conditions. And the numerical accuracy has been verified. The effects of parameters on elastic wave scattering are studied, such as boundary condition, incident frequency,incident angle and porosity of medium. Numerical results illustrate that the amplification effect of surface displacement near poroelastic sedimentary basin is notable. In addition, for the case of large porosity the drainage condition has a significant impact on the response amplitude. Due to the fluid exchange at the interface under the drained condition, the displacement amplitude can be much larger than that under the undrained condition in present study. The study can provide a theoretical basis for the anti-seismic design of engineering structures located in sedimentary basin.  相似文献   

13.
The study of the poroelastic behavior of sedimentary materials containing two immiscible fluids in response to either applied stress or pore pressure change in a quasistatic limit, i.e., negligible second time-derivatives, is of great importance to many hydrogelogical problems, e.g., land subsidence caused by withdrawal of subsurface fluids. The poroelasticity models developed for analyzing these problems feature partial differential equations that are coupled in the terms describing viscous damping and strain field. To determine closed-form analytical solutions for induced volumetric strain (dilatation) of the solid framework and its interaction with fluid flows, the choice of normal coordinates whose transformation can be performed to decouple these poroelastic equations is highly desirable. In this paper, we show that normal coordinates for decoupling these equations are real-valued and equal to three different linear combinations of the dilatations of the solid and the fluids (or equivalently, three different linear combinations of two individual fluid pressures and solid dilatation). In contrast to fully saturated porous media, it is found that the viscous damping effect must be represented in normal coordinates in the presence of the second fluid. The resulting decoupled equations representing independent motional modes are a Laplace equation and two diffusion equations, which can be solved analytically under a variety of initial and boundary conditions. Thus, after inverse transformation of normal coordinates is performed, the closed-form analytical solutions for induced solid volumetric strain and excess pore fluid pressures can be obtained simultaneously from our decoupled partial differential equations.  相似文献   

14.
This paper proposes a coupled fluid layer–foundation–poroelastic half-space vibration model to study how still water affects foundations operating underwater. As an example, we consider the problem of the vertical vibration of a rigid disk on a poroelastic half-space covered by a fluid layer having a finite depth. The solution of the disk vibration problem is obtained using the boundary conditions at the free surface of the fluid layer and the boundary conditions at the fluid layer–poroelastic medium interface. The solution is expressed in terms of dual integral equations that are converted into Fredholm integral equations of the second kind and solved numerically. Selected numerical results for the vertical dynamic impedance coefficient are examined based on different water depths, poroelastic materials, disk permeabilities and frequencies of excitation. Based on the numerical results, it is proposed that the hydrodynamic pressure caused by the foundation vibration is the intrinsic reason that the existence of a fluid layer has such a great effect on the dynamic characteristics of the foundation. In many cases, the hydrodynamic pressure caused by the foundation vibration cannot be ignored when designing dynamic underwater foundations. These results are helpful in understanding the dynamic response of foundations under still water without water waves, such as foundations in pools, lakes and reservoirs.  相似文献   

15.
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.  相似文献   

16.
Numerical simulation in coupled elastic and poroelastic media is important in oil and gas exploration. However, the interface between elastic and poroelastic media is a challenge to handle. In order to deal with the coupled model, the first-order velocity–stress wave equations are used to unify the elastic and poroelastic wave equations. In addition, an arbitrary high-order discontinuous Galerkin method is used to simulate the wave propagation in coupled elastic–poroelastic media, which achieves same order accuracy in time and space domain simultaneously. The interfaces between the two media are explicitly tackled by the Godunov numerical flux. The proposed forms of numerical flux can be used efficiently and conveniently to simulate the wave propagation at the interfaces of the coupled model and handle the absorbing boundary conditions properly. Numerical results on coupled elastic–poroelastic media with straight and curved interfaces are compared with those from a software that is based on finite element method and the interfaces are handled by boundary conditions, demonstrating the feasibility of the proposed scheme in dealing with coupled elastic–poroelastic media. In addition, the proposed method is used to simulate a more complex coupled model. The numerical results show that the proposed method is feasible to simulate the wave propagation in such a media and is easy to implement.  相似文献   

17.
A distributed-parameter physically-based solute transport model using a novel approach to describe surface-subsurface interactions is coupled to an existing flow model. In the integrated model the same surface routing and mass transport equations are used for both hillslope and channel processes, but with different parametrizations for these two cases. For the subsurface an advanced time-splitting procedure is used to solve the advection-dispersion equation for transport and a standard finite element scheme is used to solve Richards equation for flow. The surface-subsurface interactions are resolved using a mass balance-based surface boundary condition switching algorithm that partitions water and solute into actual fluxes across the land surface and changes in water and mass storage. The time stepping strategy allows the different time scales that characterize surface and subsurface water and solute dynamics to be efficiently and accurately captured. The model features and performance are demonstrated in a series of numerical experiments of hillslope drainage and runoff generation.  相似文献   

18.
The scattering of SV waves by a canyon in a fluid-saturated, poroelastic layered half-space is modeled using the indirect boundary element method in the frequency domain. The free-field responses are calculated to determine the displacements and stresses at the surface of the canyon, and fictitious distributed loads are then applied at the surface of the canyon in the free field to calculate the Green's functions for displacements and stresses. The amplitudes of the fictitious distributed loads are determined from the boundary conditions, and the displacements arising from the waves in the free field and from the fictitious distributed loads are summed to obtain the solution. The effects of fluid saturation, boundary conditions, porosity, and soil layers on the surface displacement amplitudes and phase shifts are discussed, and some useful conclusions are obtained. It is shown that the surface displacement amplitudes due to saturation and boundary conditions, different porosities, or the presence of a soil layer can be very dissimilar, and large phase shifts can be observed. The resulting wavelengths for an undrained saturated poroelastic medium are slightly longer than those for a drained saturated poroelastic medium; and are longer for a drained saturated poroelastic medium than those for a dry poroelastic medium. As porosity increases, the wavelengths become longer; and a layered half-space produces longer wavelengths than a homogeneous half-space.  相似文献   

19.
Induced stresses due to fluid extraction from axisymmetric reservoirs   总被引:1,自引:0,他引:1  
Earthquakes can be induced by fluid extraction, as well as by fluid injection.Segall (1989) proposed that poroelastic stresses are responsible for inducing earthquakes associated with fluid extraction. Here, I present methods for computing poroelastic stress changes due to fluid extraction for general axisymmetric reservoir geometries. The results ofGeertsma (1973) for a thin disk reservoir with uniform pressure drop are recovered as a special case. Predicted surface subsidence agrees very well with measured leveling changes over the deep Lacq gas field in southwestern France. The induced stresses are finite if the reservoir pressure changes are continuous. Computed stress changes are on the order of several bars, suggesting that the preexisting stress states in regions of extraction induced seismicity are very close to frictional instability prior to production.  相似文献   

20.
This paper studies three-dimensional diffraction of obliquely incident plane SH waves by twin infinitely long cylindrical cavities in layered poroelastic half-space using indirect boundary element method. The approach is validated by comparison with the literature, and the effects of cavity interval, incident frequency, and boundary drainage condition on the diffraction are studied through numerical examples. It is shown that, the interaction between two cavities is significant and surface displacement peaks become large when two cavities are close, and the surface displacement may be significantly amplified by twin cavities, and the influence range with large amplification can be as wide as 40 times of the cavity radius. Surface displacements in dry poroelastic case and saturated poroelastic cases with drained and undrained boundaries are evidently different under certain circumstances, and the differences may be much larger than those in the free-field response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号