首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Simultaneous morning Pc5 pulsations (f ~ 3–5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.  相似文献   

2.
Photometric measurements of pulsating auroras have been carried out in the Pi3 range of geomagnetic pulsations with periods of 2–10 min with the use of auroral all-sky camera films obtained at the Lovozero Observatory. The new all-sky camera developed at the Polar Geophysical Institute uses the CCD matrix. This makes it possible to obtain simultaneous images in red, green, and blue spectral ranges and thus to investigate temporal luminosity variations in these spectral regions. The hardness of penetrating auroral electrons with a time resolution of a few seconds is qualitatively estimated. It is found that the energy of the electrons that cause auroras in the Pi3 pulsation range is not constant over the pulsation period. It is maximal at the lowest luminosity and minimal at its peaks. Luminosity pulsations are compared with geomagnetic pulsations, and it is established that large differences between luminosity variations in different parts of the sky explain the incomplete correspondence between the records of auroral and geomagnetic pulsations.  相似文献   

3.
Special methods for processing TV images have been used to study the characteristics of nighttime auroras based on the observations at high-latitude observatories on Spitsbergen. Weak subvisual auroras (SVAs), originating 3°–4° north of brighter auroras in the auroral oval, have been detected in the interval 1900-0400 MLT. The average lifetime of SVAs is approximately 7 min, and the average velocity of the equatorward shift is ~0.6 km/s. SVAs were observed during relatively quiet periods, when the IMF B z component is mainly positive. However, SVAs are not polar-cap auroras since they are oriented from east to west rather than toward the Sun. The optical observations indicate that the SVA intensity is 0.2–0.5 and 0.1–0.3 kR in the 630 and 557.7 nm emissions, respectively. The average ratio of the emission intensities (I 5577/I 6300) is about 0.5. According to the direct satellite observations, the SVA electron spectrum has a maximum at 0.4–1.0 keV. In this case the energy flux of precipitating electrons is approximately an order of magnitude as low as such a flux in brighter auroral arcs in the auroral oval.  相似文献   

4.
A case is described in which complex auroral forms varied slightly at Lovozero Observatory over the course of more than an hour in the morning hours during the auroral recovery phase. Pc3 and Pc5 auroral and geomagnetic pulsations were observed during the event. The phenomenon is compared with recurrent pulsating auroras, which are described in the literature.  相似文献   

5.
The unique spectrographic observations of auroras on the Kola Peninsula, simultaneously performed in 1970 at Loparskaya and Kem stations using C-180-S cameras, have been analyzed by up-to-date digital data processing. The position and dynamics of proton precipitation relative to other manifestations of auroral and substorm activity (auroral arcs and electrojets) under moderately and weakly disturbed conditions have been analyzed. Several previously known regularities in the morphology of proton auroras have been confirmed. It has been indicated that the direction of motion of the proton band equatorward boundary in the evening sector changes at a sign reversal of the IMF Z component. Weak breakups affect the poleward boundary of the proton band but do not influence the position of the equatorward boundary of this band, which results in the expansion of the proton emission region. When a disturbance is stronger, the proton emission disappears near an active electron arc and subsequently appears poleward of its position before intensification. Short-term proton precipitation is also observed in the region of active electron precipitation during an intense breakup in the form of N–S structures.  相似文献   

6.
This review is devoted to auroral fading before beginning of the substorm active phase. This initial stage of the active phase called breakup is accompanied by a sharp brightening of auroras and their rush toward the pole. Auroral fading before breakup was first detected in discrete auroras in the nightside sector and consisted in that a short-term decrease in brightness of an arc moving toward the equator below the level observed during the preliminary phase was observed during the substorm preliminary phase 2–3 min before breakup. During fading, the velocity of equatorward motion of auroral arcs decreased up to their complete stoppage. Auroral fading in the noon sector was registered simultaneously with fading on the Earth’s nightside before the beginning of the active phase. Short-term background fading was also observed both equatorward and poleward of an arc on the nightside. It was subsequently indicated that similar fading is observed in various geophysical phenomena. It was detected that a radar aurora signal fades before breakup, if auroral substorm is observed in a radar pattern and substorm source is located under good aspect conditions. Riometer absorption decreases simultaneously with auroral fading. Geomagnetic pulsations decay on dayside and nightside immediately before breakup. Such a multiform manifestation of fading in various geophysical phenomena indicates that fading is related to some global processes proceeding in the magnetosphere when energy accumulation in this region comes to the end before its explosive release into the polar ionosphere.  相似文献   

7.
Data from the meridian scanning photometers of the NORSTAR network and all-sky cameras of the THEMIS network were used for a detailed study of the response of night auroras to the sharp decrease of the solar wind dynamic pressure on September 28, 2009. The decrease in dynamic pressure was accompanied by a corresponding depression of the magnetic field in the SYM-H index and the origin of a negative sudden impulse (SI) with a duration of 5–8 min and amplitude of 150–200 nT in the horizontal component of the magnetic field at stations of the night sector of the auroral zone. The magnetic impulse was preceded by a long calm magnetic period, although the IMF Bz-component was negative for ~1.5 hour before the SI . The commencement of the SI , which was determined by variations in the magnetic field at ~0650 UT, was accompanied by a sharp increase in the intensity of discrete forms of polar auroras in the midnight sector of the auroral zone and their fast propagation to the pole. Approximately 6–8 min after the SI , the auroral intensity in the emissions, which were excited by the fluxes of precipitated electrons and protons, quickly began to decrease in the night sector. Analysis of the optical observations showed the two-stage character of the response of the night auroras to the SI in the considered event: first, fast movement of the discrete aurora forms to the pole with a significant increase in their intensity, and a further fast decrease in auroral intensity with a delay of ~6–8 min relative to the SI . The possible reasons for such aurora behavior are discussed.  相似文献   

8.
Results of simultaneous TV observations of pulsating auroral patches and ELF-VLF-emissions in the morning sector carried out in Sodankylä (Finland) on February 15, 1991 are presented. Auroral pulsating activity was typical having pulsating patches with characteristic periods of about 7 s. Narrow-band hiss emissions and chorus elements at intervals of 0.3–0.4 s formed the main ELF-VLF activity in the frequency range 1.0–2.5 kHz at the same time. The analysis of auroral images with time resolution of 0.04 s allowed perfectly separate analysis of spatial and temporal variations in the auroral luminosity. Mutual correspondence between the behaviour of the luminous auroral patches and the appearance of ELF noise type hiss emissions and VLF chorus trains was found in two intervals chosen for analysis. While the hiss emissions were associated with the appearance of luminosity inside a limited area close to the zenith, the structured VLF emissions were accompanied by rapid motion of luminosity inside the area. The spatial dimension of the pulsating area was about 45–50 km and luminosity propagated inside it with velocity of about 10–12 kms. We discuss a new approach to explain the 5–15 s auroral pulsation based on the theory of flowing cyclotron maser and relaxation characteristics of ionosphere.  相似文献   

9.
The optical observations on Heiss Island and the ion drift measurements on the DMSP F8 satellite were used to study the aurora characteristics and ionospheric convection before and after SC registered at 2330 UT on January 13, 1988. It has been indicated that two zones of luminosity can be distinguished in morning-time auroras during the quiet period before SC: the soft zone with auroral arcs and the harder diffuse auroral zone (equatorward of the first zone). After SC, a gradual smooth activation of auroras in both zones was followed (4–5 min later) by a more abrupt intensification of diffuse luminosity and by the appearance of numerous bright discrete auroras throughout the sky. In the diffuse auroral zone, the variations in the luminosity intensity with a period of 6–7 min were observed after SC. Auroral and geomagnetic field pulsations are closely correlated. During the quiet period before SC, sunward convection was concentrated in the soft precipitation region in the form of jets located in the vicinity of auroral arcs. After SC, considerable sunward convection was observed in the diffuse auroral zone. Peaks of the upward ion drift velocity were registered in the vicinity of auroral arcs.  相似文献   

10.
An original model of atmospheric wave propagation from ground sources to the ionosphere in the atmosphere with a realistic high-altitude temperature profile is analyzed. Shaping of a narrow domain with elevated pressure in the resonance region where the horizontal phase wave velocity is equal to the sound velocity is examined theoretically within the framework of linearized Eq.s. Numerical simulations for the model profiles of atmospheric temperature and viscosity confirm analytical result for the special feature of wave fields. The formation of the narrow domain with plasma irregularities in the D and low E ionospheric layers caused by the acoustic gravity wave singularity is discussed.  相似文献   

11.
Three models for the magnetosphere-ionosphere coupling feedback instability are considered. The first model is based on demagnetization of hot ions in the plasma sheet. The instability takes place in the global magnetosphere-ionosphere system when magnetospheric electrons drift through a spatial gradient of hot magnetospheric ion population. Such a situation exists on the inner and outer edges of the plasma sheet where relatively cold magnetospheric electrons move earthward through a radial gradient of hot ions. This leads to the formation of field-aligned currents. The effect of upward field-aligned current on particle precipitation and the magnitude of ionospheric conductivity leads to the instability of this earthward convection and to its division into convection streams oriented at some angle with respect to the initial convection direction. The growth rate of the instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to formation of auroral arcs with widths about 10 km. This instability explains many features of such arcs, including their conjugacy in opposite hemispheres. However, it cannot explain the very high growth rates of some auroral arcs and very narrow arcs. For such arcs another type of instability must be considered. In the other two models the instability arises because of the generation of Alfven waves from growing arc-like structures in the ionospheric conductivity. One model is based on the modulation of precipitating electrons by field-aligned currents of the upward moving Alfven wave. The other model takes into consideration the reflection of Alfven waves from a maximum in the Alfven velocity at an altitude of about 3000 km. The growth of structures in both models takes place when the ionization function associated with upward field-aligned current is shifted from the edges of enhanced conductivity structures toward their centers. Such a shift arises because the structures move at a velocity different from the E × B drift. Although both models may work, the growth rate for the model, based on the modulation of the precipitating accelerated electrons, is significantly larger than that of the model based on the Alfven wave reflection. This mechanism is suitable for generation of auroral arcs with widths of about 1 km and less. The growth rate of the instability can be as large as 1 s-1, and this mechanism enables us to justify the development of auroral arcs only in one ionosphere. It is hardly suitable for excitation of wide and conjugate auroral arcs, but it may be responsible for the formation of small-scale structures inside a wide arc.Polar Geophysical Institute, Apatity, Russia  相似文献   

12.
The method for estimating the behavior of the ionospheric irregularity motion vector in the artificially disturbed HF ionospheric region has been proposed, and this behavior has been analyzed based on the simultaneous Doppler observations performed on several paths using the method of bi-static backscatter of diagnostic HF signals by small-scale artificial ionospheric irregularities. The Doppler measurements were performed during the modification of the auroral ionosphere by powerful HF radiowaves emitted by the EISCAT heating facility (Tromsø, Norway). It has been obtained that the dynamics of the ionospheric irregularity directions in the F region, calculated based on the Doppler measurements of the total vector of the ionospheric irregularity velocity above the Tromsø EISCAT radar at a frequency of 931 MHz, is in satisfactory agreement with such calculations performed using the three-position method.  相似文献   

13.
Using optical data from observatories of the Polar Geophysical Institutes, as well all-sky TV observations at Canadian stations of ground support for the THEMIS satellite mission, we clarify whether Alfvén resonance should necessarily be present in the region of subsequent substorm onset. If this is true, the diversion of magnetospheric cross-tail current to the ionosphere, which leads to substorm onset, may be due to resonant Alfvén (or flapping) oscillations that increase in duration. This possibility is believed to indicate optically the presence of Alfvén resonance via periodic restructuring of the preonset auroral arc 3–15 min before onset at T 0 . At the latitudes of the observatories included in this study, auroral restructuring occurs as repetitive poleward excursions of the preonset arc (the periods of excursions are 1–3 min) and can be readily explained by the theory of Alfvén resonance. It is shown that this feature, while typically observed in strong substorm events, may be lacking for weaker substorms. As proved by conjugate satellite observations, the lack of auroral restructuring in the latter case may result from the weakness of the involved Alfvén resonance, which is still present but not accompanied by large field-aligned currents sufficient for visualization in the ionosphere of the apparent propagation of oscillation phase across the resonance layer.  相似文献   

14.
The position of the auroral luminosity equatorward boundary during the interaction between the Earth’s magnetosphere and isolated solar wind streams from different solar sources has been statistically studied based on the ground and satellite observations of auroras. These studies continue the series of the works performed in order to develop the technique for predicting auroras based on the characteristics of the interplanetary medium and auroral disturbances. The dependences of the minimal position of the auroral luminosity equatorward boundary (Φ′) on the values of the azimuthal component of the interplanetary electric field (E y ) and AL indices of magnetic activity, averaged over 6 and 24 h, are presented. The distribution limits for each type of isolated solar wind streams on the Φ′-E y and Φ′-AL planes have been determined.  相似文献   

15.
The Solar Magnetic Cloud (SMC)/Coronal Mass Ejection (CME) event of January1997 triggered auroral displays in all sectors of the auroral oval as well as in the polar cap region.Near infrared emissions from these auroras were recorded simultaneously in the night sector overSondrestromfjord (Sonde), Greenland, in the day sector over Longyearbyen, Svalbard and in thepolar cap region over Eureka, Canada. The spectral distributions of these emissions indicateprecipitation of electrons with average energy (EAV) of (500±100) eV,dissipating most of their energy around (180±20) km height (hmax) in thethermosphere. These findings are consistent with the concurrent auroral ionization profilesrecorded by the Incoherent Scatter Radar soundings at Sonde. In contrast, most of the nighttimeauroras, not related to SMC/CME events, are excited by electrons with EAV > a few keV and peak in the lower thermosphere with hmax around 110 km.Similarly, normal dayside cusp auroras and polar cap drizzle excited emissions emanate from theupper thermosphere above 200 km altitude. SMC/CME related auroras were also observed inOctober 1995 at Sonde, and in May 1996 as well as in May 1997 at the South Pole Station inAntarctica. Spectral characteristics, and hence EAV and hmax, of all these other SMC/CME related auroras, are similar to those of the January 1997event. These observations suggest that during a significant part of the period when SMC/CMEplasmas and fields interact with the magnetosphere, relatively low energy electrons precipitate inthe thermosphere. Such SMC/CME triggered auroras interact with the middle thermosphereconstituents in the 160–200 km height region. The latter region is inaccessible for remote sensingits composition and thermodynamics in normal auroras, which generally peak at lower heights; theSMC/CME events provide the opportunity for such investigations.  相似文献   

16.
The dynamics and fine structure of auroras before and during 60 auroral breakups, including pseudobreakups and breakups at moderate and high auroral activity, have been studied using the developed method for processing television images. The IMAGE and POLAR satellite and simultaneous ground images of auroras, ground magnetic data, and measurements of IMF and solar wind plasma parameters have been analyzed. The signatures that can be precursors of breakup have been found out in the auroral dynamics and morphology in the spatial—temporal vicinity of breakup. The morphological characteristics of auroral structures have been analyzed statistically. The directions of motion of weak subvisual structures have been determined. The velocities of motion of such structures are presented. The relation of the initial auroral arc bright-ening during breakups and pseudobreakups to the beginning of magnetic activation and formation of rayed structures has been analyzed.  相似文献   

17.
An intensification of auroral luminosity referred to as an auroral break-up often accompanies the onset of geomagnetic pulsation (Pi 2) at the dip-equator. One such auroral break-up occurred at 2239 UT on 16 June, 1986, being accompanied by weak substorm activity (AE≈50 nT) which was recorded in all-sky image of Syowa Station, Antarctica (66.2°S, 71.8°E in geomagnetic coordinates). The associated Pi 2 magnetic pulsation was detected by a fluxgate magnetometer in the afternoon sector at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00). In spite of the large separation of the two stations in longitude and latitude, the auroral break-up and subsequent luminosity modulation were seen to be correlated with the wave form of the ground Pi 2 pulsation. This occurred in such a way that the luminosity maximum was seen to occur at the phase of maximum amplitudes of Pi 2 wave form. We argue that the observed correlation could be interpreted as indicating a Pi 2-modulation of a field-aligned acceleration of the low energy electrons that may occur near the equator of the midnight magnetosphere.  相似文献   

18.
We have studied the influence of daytime polar substorms (geomagnetic bays under the IMF Bz > 0) on variations of the vertical gradient of the atmospheric electric field potential (Ez) observed at the Polish Hornsund Station (Svalbard, Norway). Only the observations of Ez under “fair weather” conditions were used, i.e. in the absence of strong wind, precipitations, low cloud cover, etc. We studied more than 20 events of daytime polar substorms registered by the Scandinavian chain of IMAGE magnetometers in 2010–2014 during the “fair weather” periods at the Hornsund Station. Analysis of the observations showed that Ez significantly deviates from the its background variations during daytime, as a rule, when the Hornsund Station is in the region of projection of the daytime auroral oval, the position of which was determined from OVATION data. It was shown that the development of a daytime polar substorm leads to fluctuating enhance of Ez values. It was found that Ez surges are accompanied by intensification of field-aligned electric currents outflowing from the ionosphere, which were calculated from the data of low-orbit communication satellites of the AMPERE project.  相似文献   

19.
The substorm characteristics during the main phase of a large magnetic storm of November 20, 2003, are studied based on the data of TV observations of auroras and auroral absorption at Tixie Bay station and at the global network of magnetic stations. The contribution of auroral particles, responsible for the emission of discrete auroras, has been estimated based on an analysis of the spatial-time variations in the auroral luminosity intensity. This contribution accounted for ~40% of the total luminous flux, which is approximately twice as large as was previously observed in substorm disturbances. Responses of the solar wind and IMF parameters in substorms and variations in the magnetic indices, characterizing geomagnetic activity in the northern polar cap and ring current (PCN, ASY-H and SYM-H), have been detected. The spatial-time distribution of the equivalent ionospheric currents has been constructed, and the total value of these currents along the meridian has been determined based on the [Popov et al., 2001] method and using the IMAGE magnetic data. It has been obtained that the maximal total equivalent ionospheric current in the premidnight sector (~2000 MLT) leads the minimal value of the SYM-H index by ~1.5 h.  相似文献   

20.
Based on results of the simultaneous TV observations at Barentsburg high-latitude observatory and Lovozero auroral observatory and using the IMAGE auroral luminosity images, the auroral fine structure and dynamics has been studied during the substorm of December 26, 2000, when the auroral luminosity distribution represented a double oval. It has been indicated that the interaction between the processes proceeding in different magnetospheric regions, the projections of which are the poleward and equatorward edges of the double oval, is observed in auroras in the process of substorm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号