首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
谈哲敏  伍荣生 《气象学报》1992,50(4):403-412
本文利用Ekman动量近似研究了斜压性对Ekman层动力学的影响,得到了一些新的结果。大气斜压性对Ekman层的水平风速分布及近地面的风速矢的水平分量夹角有重要的改变作用。斜压边界层顶部的非线性Ekman抽吸(垂直运动)由三个不同的物理因子决定,第一、正压性的地面地转涡度,第二、斜压性作用产生的热成风涡度,第三、正压性的地面地转涡度与斜压性的热成风涡度的非线性相互作用。这些理论结果为边界层的参数化及数值模拟结果的解释提供物理基础。  相似文献   

2.
A time-dependent semi-geostrophic Ekman boundary-layer model based on the geostrophic momentum approximation is used to study the diurnal wind variation in the planetary boundary layer (PBL) and the evolution of the low-level nocturnal jet (LLJ). The coefficient of eddy viscosity varies periodically with time, varies linearly with height in the surface layer and is constant above the surface layer. The influence of horizontal advection of momentum on the diurnal wind variation in the PBL, the development of inertial oscillations (IOs) and the formation of the LLJ are examined.In comparison with the Ekman solutions, the diurnal wind variation in semi-geostrophic Ekman boundary-layer dynamics has the following features: (1) the phase angle of the diurnal wind wave shifts with height, the rate of shifting is increased in anticyclonic regions and decreased in cyclonic regions, (2) the time of occurrence of the low-level maximum wind speed is later in anticyclonic regions and earlier in cyclonic regions, (3) the height of occurrence of the maximum wind speed is higher in the anticyclonic and lower in cyclonic regions, (4) the wind speed maximum and the amplitude of the diurnal wind variation are larger in anticyclonic and smaller in cyclonic regions, (5) the period of IOs is larger in anticyclonic regions and smaller in cyclonic regions, (6) anticyclonic vorticity is conducive to the generation of LLJ in the PBL. These features are interpreted by means of the physical properties of semi-geostrophic Ekman boundary-layer dynamics and inertial oscillation dynamics.  相似文献   

3.
何京伟  谈哲敏 《气象科学》2001,21(4):433-444
在边界层动力学中,涡动粘性系数是影响边界层风场结构的一个重要参数。本文利用边界层动力学中的Ekman动量近似理论,给出了涡动粘性系数随高度缓变条件下的Ekman动量近似边界层模式解,着重讨论了边界层的风场结构、水平散度、垂直涡度以及边界层顶部的垂直速度。结果分析表明:与常值涡动粘性系数情况相比,在边界层低层随高度增加的涡动粘性系数可以导致低层边界层风速随高度迅速增加,即风速垂直切变增加,同时风速矢与地转风之间的夹角减小。惯性项作用可以导致上述作用在气旋性区域减小、而在反气旋性区域增大。随高度增加的涡动粘性系数导致水平散度绝对值、垂直涡度绝对值以及边界层顶部的垂直速度绝对值在气旋性区域减小,而在反气性旋区域增大。涡动粘性系数与惯性之间的非线性相互作用是边界层动力学中重要过程。  相似文献   

4.
边界层动力学中的Ekman动量近似   总被引:3,自引:3,他引:3  
谈哲敏  伍荣生 《气象学报》1991,49(4):421-429
自由大气中,大气运动的基本状态是地转风,近年来发展的地转动量近似,是为了进一步研究非均匀地转流的动力学问题,然而,在边界层大气中,运动的基本状态是经典的Ekman流,所以对边界层运动来说,地转动量近似是不合适的,需作一推广。本文提出了一种所谓Ekman动量近似,它相似于自由大气中的地转动量近似,并讨论了Ekman动量近似的物理基础,对边界层的风场结构及边界屋顶部的垂直速度也作了详细分析。  相似文献   

5.
6.
Dynamics of nonlinear baroclinic Ekman boundary layer   总被引:2,自引:0,他引:2  
By the geostrophic momentum approximation, the wind structure and vertical motion within the non-linear baroclinic Ekman layer matching with the surface layer are determined. A comparison of the Ekman solution with the classical one is made. It is demonstrated that the contributions of baroclinity, stratification and nonlinear effects to the wind profile within the layer are all of definite importance.  相似文献   

7.
本文研究了斜压效应对地转动量Ekman流的影响。利用两变量奇异摄动方法求得了边界层中风场及顶部垂直速度的前二级一致有效渐近解析解,解中明显地反映了斜压情形地转风随高度变化(即热成风)的影响,尤其是其中一级近似解完全由热成风影响所致。在边界层顶垂直速度的解中导出了三种由斜压效应引起的Ekmon抽吸新物理因子,即热成风形变、热成风涡度及热成风涡度交叉项等抽吸因子。分析表明,这些因子只在具有水平温度梯度不均匀的系统(譬如锋区)中方能出现。文中还对锋区内上述三种抽吸因子的动力特征作了具体的分析,指出在锋区这样的强斜压系统中,此三种抽吸因子的贡献是显著的。下一文中,我们将利用本文所得理论解对斜压效应进行具体的定量计算。   相似文献   

8.
Ekman动量近似下中间边界层模式中的风场结构   总被引:2,自引:0,他引:2  
发展了一个准三维的、中等复杂的边界层动力学模式,该模式包含了EKman动量近似下的惯性加速度和Blackadar的非线性湍流粘性系数,它进一步改进了Tan和Wu(1993)提出的边界层理论模型。该模型在数值计算复杂性上与经典Ekman模式相类似,但由于包含了Ekman动量近似下的惯性项,使得该模式比传统Ekman模式更近于实际过程。中详细地比较了该模式与其他简化边界层模式在动力学上的差异,结果表明:在经典的Ekman模式中,由于忽略了流动的惯性项作用,导致在气旋性切变气流(反气旋性切变气流)中风速和边界层顶部的垂直速度的高估(低估),而在半地转边界层模式中,由于高估了流动惯性项的作用,结果与经典Ekman模式相反。同样,该模式可以应用于斜压边界层,对于Ekman动量下的斜压边界层风场同时具有经典斜压边界层和Ekman动量近似边界层的特征。  相似文献   

9.
Ekman边界层动力学的理论研究   总被引:5,自引:0,他引:5  
谈哲敏  方娟  伍荣生 《气象学报》2005,63(5):543-555
大气边界层及其与自由大气之间的相互作用具有明显的非线性特征,而这些特征是经典Ekman理论所不能描述的,因此,发展中等复杂程度(介于完全模式与经典Ekman模型之间)的大气边界层动力学模式,简称中间模式,对人们从理论上认识大气边界层动力学过程的非线性特征具有重要意义。本文对目前最具代表性的几个中间边界层模型:地转动量近似边界层模型、Ekman动量近似边界层模型以及弱非线性边界层模型进行了总结和分析,阐述了Ekman层主要动力学特征。通过分析上述各模型的理论框架,揭示了各模型的物理意义及其在描述Ekman边界层基本动力特征上的优点和局限性,并指出尽管在细节定量描述上有差异,但各中间模型对Ekman层动力学特征的定性描述具有很好的一致性。对于这些Ekman边界层近似理论模型的进一步应用问题,主要回顾和总结了利用上述模型探讨地形边界层结构、大气锋生过程、低层锋面结构和环流以及边界层日变化、低空急流形成等动力学问题的研究,并对这些研究所揭示的Ekman层动力学特征及其对自由大气低层运动的影响进行了分析,结果表明,这些Ekman边界层近似模型可以较好地揭示大气边界层动力学特征,在大气边界层动力学及其与自由大气相互作用的研究上具有重要价值。另外,还对目前Ekman边界层理论研究中存在的问题进行了一些分析,提出了有待进一步研究的科学问题。  相似文献   

10.
边界层特征参数对边界层顶垂直速度的影响   总被引:1,自引:1,他引:1  
赵鸣 《大气科学》1994,18(4):413-422
本文从正斜压及有层结时的边界层相似理论及阻力定律出发,由边界层顶垂直速度与地面湍应力的关系求出了层结、粗糙度、它们的水平梯度及地转风的水平梯度、斜压性对w的影响的解析式,可用于模式计算。计算结果表明层结影响可使w差1-2个量级,不稳定时粗糙度影响也使w差几倍。除地转涡度决定w外,地转风、层结稳定度和粗糙度及其水平梯度也起了重要作用,还讨论了斜压性的影响。  相似文献   

11.
Numerical results indicate that advection of momentum in the boundary layer may significantly alter both the structure of the planetary boundary layer and its influence on the overlying free atmosphere. However, due to the nonlinearity of the inertial terms, it is always difficult to obtain the analytical solution of the boundary-layer model that retains the flow acceleration. In order to overcome this difficulty, the geostrophic momentum (hereafter GM) approximation has been introduced into boundary-layer models. By replacing the advected momentum with the geostrophic wind, the effect of the flow acceleration is partially considered and the original nonlinear partial differential equation set is converted to ordinary differential equations, the solutions of which can be obtained easily with standard techniques. However, the model employing GM fails to capture the features of the boundary layer when the spatio-temporal variation of the boundary-layer flow cannot be properly approximated by the geostrophic wind. In the present work, a modified boundary-layer model with the inertial acceleration in a different approximate form is proposed, in which the advecting wind instead of the advected momentum is approximated by the geostrophic wind (hereafter GAM).Comparing the horizontal velocity and boundary-layer pumping obtained from the classical Ekman theory, and the model incorporating (i) GM and (ii) GAM, it is found that the model with GAM describes most facets of the steady well-mixed layer beneath a north-westerly flow with embedded mesoscale perturbations that is considered in the present work. Inspection of the solution of the model with GAM shows that, within the limit of the validation of the model (i.e., the Rossby number RO is not very large and the drag coefficient CD is not too small), the horizontal convergence (divergence) is strengthened by the effect of the inertial acceleration in the region of maximum positive (negative) geostrophic vorticity. Consequently, the boundary-layer pumping there is intensified. It is found that the intensification is firstly strengthened and then weakened as RO or CD increases.  相似文献   

12.
Data from low-level soundings over Cambridge, U.S.A. were selected on the basis of an Ekman-like variation of the wind vector with altitude combined with evidence of a barotropic atmosphere. The method of geostrophic departure was used to determine the shear-stress distribution. The analysis yields the dimensionless properties of the barotropic Ekman layer under neutral and stable stratification. Some important results include: the geostrophic drag coefficient displays no dependence on the degree of static stability; the dimensionless height of the boundary layer decreases with increasing stability in agreement with the prediction of Zilitinkevich; the properties of the urban surface layer, where the roughness elements are multistory buildings, show no dependence on atmospheric stability under the moderate wind conditions which display the Ekman-like wind profile; and the directions of the horizontal shear stress and the vertical derivative of the velocity vector usually tend to be parallel only near the surface layer. Values of the two constants of the Rossby number similarity theory are found for the neutral barotropic Ekman layer at a surface Rossby number equal to 2 × 105. The implications of the work with respect to wind-tunnel simulation of the flow over models of urban areas are discussed.  相似文献   

13.
The traditional Ekman boundary-layer parameterization is introduced into the quasigeostrophic Eady baroclinic instability model and into the deformation flow model, to couple the planetary boundary layer with the inviscid interior flow aloft. An explicit time-dependent version of this parameterization is then introduced into an unbalanced zero potential vorticity model to evaluate the initial transient response. It is noted that the adaptation of the geostrophic flow to the same parameterization is different in each of the balanced models. The characteristic flow response reflects thedifferent constraints imposed by each model. Further, the zero potential vorticity condition constrains the evolution of the baroclinic geostrophic part of the flow, which leads to an unphysical flow response when the Ekman boundary-layer parameterization is employed with this unbalanced model. The barotropic part of the flow does, however, evolve in a physically consistent manner spinning down to reflect the introduction of low momentum air pumped into the interior from the boundary layer. Moreover, the transient spin-up processis shown to have an insignificant effect on this spin-down process.  相似文献   

14.
The inertial coupling model of the surface shear stress at the sea surface (Bye, 1995) which takes account of the surface wavefield, has been applied to couple the Ekman layers of the ocean and atmosphere. We determine the surface shear stress and geostrophic drag coefficient, under barotropic conditions. The results are expressed in terms of the shear between the inertially weighted (i.e. velocity×square root of the density) relative geostrophic velocities in the two fluids, in which the reference velocity need not be specified, a priori. We find, in particular, that the deflection of the relative surface geostrophic wind to the surface shear stress in naturally occurring seastates, is about 9°. In the application of the analysis to general circulation models, it is argued that, since the inertially weighted relative geostrophic velocities in air and water are of similar magnitude, this implies that the surface shear stress can be significantly reduced by the current component of the inertially weighted geostrophic shear, with a corresponding reduction in importance of the Ekman transport.  相似文献   

15.
In this paper, the influences of orography on the boundary layer flow with the approximation of geostrophic momentum are studied. The wind velocity at the lower boundary will not always be zero when the orography exists. So the structure of the boundary layer flow, as well as the vertical velocity at the top of the boundary layer, is affected. There are three factors affecting the vertical motion at the top of the boundary layer: lifting due to orography; divergence due to Ekman flow, and advection of the geostrophic momentum. These effects and the features of the flow within the boundary layer are discussed in detail.  相似文献   

16.
The WKB method has been used to develop an approximate solutionof the semi-geostrophic Ekman boundary layer with height-dependenteddy viscosity and a baroclinic pressure field. The approximate solutionretains the same simple form as the classical Ekman solution. Behavioursof the approximate solution are discussed for different eddy viscosityand the pressure systems. These features show that wind structure inthe semi-geostrophic Ekman boundary layer depends on the interactionbetween the inertial acceleration, variable eddy viscosity and baroclinicpressure gradient. Anticyclonic shear has an acceleration effect on theair motion in the boundary layer, while cyclonic shear has a decelerationeffect. Decreasing pressure gradient with height results in a super-geostrophicpeak in the wind speed profile, however the increasing pressure gradient withheight may remove the peak. Anticyclonic shear and decreasing the variableeddy viscosity with height has an enhanced effect on the peak.Variable eddy viscosity and inertial acceleration has an important role in thedivergence and vorticity in the boundary layer and the vertical motion at the top of the boundary layer that is called Ekman pumping. Compared to the constanteddy viscosity case, the variable eddy diffusivity reduces the absolute value ofEkman pumping, especially in the case of eddy viscosity initially increasing with height. The difference in the Ekman pumping produced by different eddy diffusivity assumptions is intensified in anticyclonic flow and reduced in cyclonic flow.  相似文献   

17.
In considering the weak non-linear effect, and using the small parameter expansion method, the analyt-ical expressions of the wind distribution within PBL (planetary boundary layer) and the vertical velocity at the top of the PBL are obtained when the PBL is divided into three layers and different eddy transfer coefficients K are adopted for the three layers. The conditions of barotropy and neutrality for the PBL are extended to that of baroclinity and non-neutral stratification. An example of a steady circular vortex is used to display the characteristics of the horizontal wind within the PBL and the vertical velocity at the top of the PBL. Some new results have been obtained, indicating that the magnitude of the speed in the lower height calculated by the present model is larger than that by the model in which k is a constant within the whole boundary layer, for example, in the classical Ekman boundary layer model and the model by Wu (1984). The angle between the wind at the top of the PBL and the wind near the surface calculated by the present model is less than that calculated by the single K model. These results are in agreement with the observations.  相似文献   

18.
The Ekman-Taylor problem for the planetary boundary layer is solved in the case of a thermal wind which varies linearly with height. The upper boundary condition is a vanishing ageostrophic wind, while the lower boundary condition is continuity of the stress vector across the interface between the planetary boundary layer and the surface layer. The latter condition is used to determine the magnitude and the direction of the wind at the bottom of the Ekman layer.Theoretical hodographs are compared with observed hodographs based on five years of ohservations from Ship N in the Pacific, giving fair agreement.The divergence, the vorticity, and the vertical velocity are calculated through the Ekman layer with emphasis on differences between the classical barotropic and the baroclinic cases; these differences are significant, especially in the vertical velocities as compared to the standard approximation.An extension of the present study to include thermal stratification is desirable.  相似文献   

19.
赵鸣 《气象学报》2001,59(3):271-279
文中求解了锋面存在时地转动量近似下的大气边界层运动方程 ,得到了边界层内冷锋流场的一些特征 ,如冷锋坡度随地转涡度增加而增加 ,随地转风速时间倾向的增加而增加 ,随沿锋面传播方向的热成风分量的减少而增加。而边界层内冷锋面上下的流场与锋面坡度、地转风及其时空变化特征有关 ,共同特点是在冷锋面高度以下有下滑运动 ,而其上有一层上滑运动区。  相似文献   

20.
The motion equation of atmospheric boundary layer with cold front surface under geostrophic momentum approximation is solved and some characteristics of the stream field for the cold front surface in the boundary layer are derived,for example,the slope of the cold front surface increases with the increases of geostrophic vorticity and the temporal tendency of geostrophic wind speed,and also increases with the decrease of the component of thermal wind speed along the motion direction of the front:the stream field above and below the cold front surface in the boundary layer depends on the slope of the front surface,geostrophic wind speed and its temporal and spatial distributions.A common characteristic is that there exist updraft motion above the cold front surface and downdraft motion below it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号