首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
A new seasonal prediction model for annual tropical storm numbers(ATSNs)over the western North Pacific was developed using the preceding January-February(JF)and April-May(AM)grid-point data at a resolution of 2.5°×2.5°.The JF and AM mean precipitation and the AM mean 500-hPa geopotential height in the Northern Hemisphere,together with the JF mean 500-hPa geopotential height in the Southern Hemisphere,were employed to compose the ATSN forecast model via the stepwise multiple linear regression technique.All JF and AM mean data were confined to the Eastern Hemisphere.We established two empirical prediction models for ATSN using the ERA40 reanalysis and NCEP reanalysis datasets,respectively,together with the observed precipitation.The performance of the models was verified by cross-validation.Anomaly correlation coefficients(ACC)at 0.78 and 0.74 were obtained via comparison of the retrospective predictions of the two models and the observed ATSNs from 1979 to 2002.The multi-year mean absolute prediction errors were 3.0 and 3.2 for the two models respectively,or roughly 10% of the average ATSN.In practice,the final prediction was made by averaging the ATSN predictions of the two models.This resulted in a higher score,with ACC being further increased to 0.88,and the mean absolute error reduced to 1.92,or 6.13% of the average ATSN.  相似文献   

2.
A timescale decomposed threshold regression(TSDTR) downscaling approach to forecasting South China early summer rainfall(SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data. It makes use of two distinct regression downscaling models corresponding to the interannual and interdecadal rainfall variability of SCESR.The two models are developed based on the partial least squares(PLS) regression technique, linking SCESR to SST modes in preceding months on both interannual and interdecadal timescales. Specifically, using the datasets in the calibration period 1915–84, the variability of SCESR and SST are decomposed into interannual and interdecadal components. On the interannual timescale, a threshold PLS regression model is fitted to interannual components of SCESR and March SST patterns by taking account of the modulation of negative and positive phases of the Pacific Decadal Oscillation(PDO). On the interdecadal timescale, a standard PLS regression model is fitted to the relationship between SCESR and preceding November SST patterns. The total rainfall prediction is obtained by the sum of the outputs from both the interannual and interdecadal models. Results show that the TSDTR downscaling approach achieves reasonable skill in predicting the observed rainfall in the validation period 1985–2006, compared to other simpler approaches. This study suggests that the TSDTR approach,considering different interannual SCESR-SST relationships under the modulation of PDO phases, as well as the interdecadal variability of SCESR associated with SST patterns, may provide a new perspective to improve climate predictions.  相似文献   

3.
The purpose of this study was to design and test a statistical-dynamical scheme for the extraseasonal(one season in advance) prediction of summer rainfall at 160 observation stations across China.The scheme combined both valuable information from the preceding observations and dynamical information from synchronous numerical predictions of atmospheric circulation factors produced by an atmospheric general circulation model.First,the key preceding climatic signals and synchronous atmospheric circulation factors that were not only closely related to summer rainfall but also numerically predictable were identified as the potential predictors.Second,the extraseasonal prediction models of summer rainfall were constructed using a multivariate linear regression analysis for 15 subregions and then 160 stations across China.Cross-validation analyses performed for the period 1983-2008 revealed that the performance of the prediction models was not only high in terms of interannual variation,trend,and sign but also was stable during the whole period.Furthermore,the performance of the scheme was confirmed by the accuracy of the real-time prediction of summer rainfall during 2009 and 2010.  相似文献   

4.
A simple approach that considers both internal decadal variability and the effect of anthropogenic forcing is developed to predict the decadal components of global sea surface temperatures (SSTs) for the three decades 2011-2040. The internal decadal component is derived by harmonic wave expansion analyses based on the quasiperiodic evolution of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO), as obtained from observational SST datasets. Furthermore, the external decadal component induced by anthropogenic forcing is assessed with a second-order fit based on the ensemble of projected SSTs in the experiments with multiple coupled climate models associated with the third Coupled Model Intercomparison Project (CMIP3) under the Intergovernmental Panels on Climate Change (IPCC) Special Reports on Emissions Scenario (SRES) A1B. A validation for the years from 2002 to 2010 based on a comparison of the predicted and the observed SST and their spatial correlation, as well as the root mean square error (RMSE), suggests that the approach is reasonable overall. In addition, the predicted results over the 50°S-50°N global band, the Indian Ocean, the western Pacific Ocean, the tropical eastern Pacific Ocean, and the North and the South Atlantic Ocean are presented.  相似文献   

5.
Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast.  相似文献   

6.
The first decadal leading mode of East Asian summer rainfall (EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode (2DLM), accounting for 17.3% of rainfall decadal vari- ance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data. This mode is characterized by a South-China-wet-Huaihe- River-dry pattern, and is dominated by a quasi-30-yr pe- riod. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation (PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a telecon- nection relationship with the 2DLM of EASR.  相似文献   

7.
Preliminary evaluations of FGOALS-g2 for decadal predictions   总被引:3,自引:0,他引:3  
The Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2) for decadal predictions, is evaluated preliminarily, based on sets of ensemble 10-year hindcasts that it has produced. The results show that the hindcasts were more accurate in decadal variability of SST and surface air temperature (SAT), particularly in that of Nin o3.4 SST and China regional SAT, than the second sample of the historical runs for 20th-century climate (the control) by the same model. Both the control and the hindcasts represented the global warming well using the same external forcings, but the control overestimated the warming. The hindcasts produced the warming closer to the observations. Performance of FGOALS-g2 in hindcasts benefits from more realistic initial conditions provided by the initialization run and a smaller model bias resulting from the use of a dynamic bias correction scheme newly developed in this study. The initialization consists of a 61-year nudging-based assimilation cycle, which follows on the control run on 01 January 1945 with the incorporation of observation data of upper-ocean temperature and salinity at each integration step in the ocean component model, the LASG IAP Climate System Ocean Model, Version 2 (LICOM2). The dynamic bias correction is implemented at each step of LICOM2 during the hindcasts to reduce the systematic biases existing in upper-ocean temperature and salinity by incorporating multi-year monthly mean increments produced in the assimilation cycle. The effectiveness of the assimilation cycle and the role of the correction scheme were assessed prior to the hindcasts.  相似文献   

8.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

9.
The aim of this study is to analyze the spatial and temporal structure of drought over the continental United States(CONUS) and their teleconnection at different timescales from observations and climate models. We use the standardized precipitation evapotranspiration index(SPEI) at 12-and 24-month timescales as the drought index. Spatial patterns of drought regimes are delineated by using the principal component analysis(PCA) while the temporal characteristics of the variability of each drought pattern and teleconnection with climate indices are analyzed by using the wavelet analysis. Wavelet coherence of the drought pattern and four climate indices: El Ni?o–Southern Oscillation(ENSO), Pacific decadal oscillation(PDO), Atlantic multidecadal oscillation(AMO), and North Atlantic Oscillation(NAO) are analyzed. The results show that major drought patterns are located over the Northwest, South, Upper Midwest, and East regions. The spatial pattern of the drought regimes is similar for the 12-and 24-month timescale drought. ENSO influences the drought over West and South at decadal timescales throughout the study period(1950–2015) while intermittent significant coherence is observed at interannual timescale. The coherence of NAO and PDO with SPEI-12 is decreased during recent decades. Generally, regional climate model(RCM)-simulated drought patterns are more localized in a smaller area over the region compared to the spatial extent of observed drought patterns. Power spectra of seasonal to interannual variability(2–5-yr period) of all four drought patterns from RCM simulations are similar to those from the observations. However, at larger periodicities(decadal variations)among-RCM spread increases with increasing periods.  相似文献   

10.
After the consideration of the nonlinear nature changes of monsoon index,and the subjective determination of network structure in traditional artificial neural network prediction modeling,monthly and seasonal monsoon intensity index prediction is studied in this paper by using nonlinear genetic neural network ensemble prediction(GNNEP)modeling.It differs from traditional prediction modeling in the following aspects: (1)Input factors of the GNNEP model of monsoon index were selected from a large quantity of preceding period high correlation factors,such as monthly sea temperature fields,monthly 500-hPa air temperature fields,monthly 200-hPa geopotential height fields,etc.,and they were also highly information-condensed and system dimensionality-reduced by using the empirical orthogonal function(EOF)method,which effectively condensed the useful information of predictors and therefore controlled the size of network structure of the GNNEP model.(2)In the input design of the GNNEP model,a mean generating function(MGF)series of predictand(monsoon index)was added as an input factor;the contrast analysis of results of predic- tion experiments by a physical variable predictor-predictand MGF GNNEP model and a physical variable predictor GNNEP model shows that the incorporation of the periodical variation of predictand(monsoon index)is very effective in improving the prediction of monsoon index.(3)Different from the traditional neural network modeling,the GNNEP modeling is able to objectively determine the network structure of the GNNNEP model,and the model constructed has a better generalization capability.In the case of identical predictors,prediction modeling samples,and independent prediction samples,the prediction accuracy of our GNNEP model combined with the system dimensionality reduction technique of predictors is clearly higher than that of the traditional stepwise regression model using the traditional treatment technique of predictors,suggesting that the GNNEP model opens up a vast range of possibilities for operational weather prediction.  相似文献   

11.
黄艳艳  王会军 《气象学报》2020,78(2):177-186
太平洋年代际振荡(PDO)是北太平洋海表温度年代际变率的主模态。由于太平洋年代际振荡对区域乃至全球气候的显著影响,其合理的预测结果可以带来多方面收益。然而,针对太平洋年代际振荡及其有关的海表温度的年代际预测,目前气候模式的预测水平还十分有限,因此,提出了一个新的增量方法。一系列的验证结果表明,增量方法可以有效预测太平洋年代际振荡,其中包括成功预测出其振荡的年代际转折。增量方法的预测过程主要包括3个步骤:(1)采用5 a滑动平均得到太平洋年代际振荡的年代际变率;(2)利用3 a增量形式的预测因子构建预测模型,预测3 a增量的太平洋年代际振荡(DI_PDO);(3)将预测得到的DI_PDO加上3 a前的观测PDO,得到最后预测的PDO。增量方法亦可以应用到气候系统年代际内部变率的其他模态(如:北大西洋年代际振荡)和其他气候变量的年代际预测(如:海表温度)。   相似文献   

12.
The Pacific Decadal Oscillation(PDO) is a leading mode of decadal sea surface temperature variability in the North Pacific. Skillful PDO prediction can be beneficial in many aspects because of its global and regional impacts.However, current climate models cannot provide satisfied decadal prediction of the PDO and related decadal variability of sea surface temperature. In this study, we propose a new approach, i.e., the increment method, to predicting the PDO. A series of validations demonstrate that the increment method is effective in improving decadal prediction of PDO and it can well capture the phase change of PDO with high accuracy. The prediction processes include three steps. First, a five-year smoothing is performed; second, effective preceding predictors for PDO are selected, with all predictors and predictands in the form of a three-year decadal increment(DI); third, the prediction model is set up for PDO three-year decadal increment(DI_PDO), and PDO prediction can be obtained by adding the predicted DI_PDO to the observed PDO three years ago. This new method can also be applied for decadal climate prediction of other modes(e.g., Atlantic multidecadal oscillation) and predictands(e.g., sea surface temperature).  相似文献   

13.
基于时间尺度分离的中国东部夏季降水预测   总被引:2,自引:1,他引:1       下载免费PDF全文
基于时间尺度分离,利用NCEP第2代气候预测系统 (CFSv2) 每年4月起报的夏季月平均预测资料, 结合实际观测资料和再分析资料,对江淮流域及华北地区夏季降水距平百分率进行降尺度预测。将预测量和预测因子分为年际分量和年代际分量,在两个时间尺度上分别建立降尺度模型,两个预测分量之和为总预测量。对1982—2008年拟合时段的夏季降水距平百分率的回报结果表明:降尺度预测结果相对于原始模式结果预测技巧显著提高。降尺度预测与实况降水在江淮流域和华北地区的空间相关系数最大值超过0.8,多年平均值也分别提高到0.53和0.51;时间相关在每个站点也显著增强,相关系数为0.38~0.65。对2009—2013年进行独立样本检验,结果表明:降尺度模型能较好地预测出该时段的降水异常空间型态。同时,该模型对2014年夏季降水长江以南偏多、黄淮地区偏少的分布形势也有一定预测能力。  相似文献   

14.
Seasonal prediction of summer rainfall over the Yangtze River valley(YRV) is valuable for agricultural and industrial production and freshwater resource management in China, but remains a major challenge. Earlier multi-model ensemble(MME) prediction schemes for summer rainfall over China focus on single-value prediction, which cannot provide the necessary uncertainty information, while commonly-used ensemble schemes for probability density function(PDF) prediction are not adapted to YRV summer rainfall prediction. In the present study, an MME PDF prediction scheme is proposed based on the ENSEMBLES hindcasts. It is similar to the earlier Bayesian ensemble prediction scheme, but with optimization of ensemble members and a revision of the variance modeling of the likelihood function. The optimized ensemble members are regressed YRV summer rainfall with factors selected from model outputs of synchronous 500-h Pa geopotential height as predictors. The revised variance modeling of the likelihood function is a simple linear regression with ensemble spread as the predictor. The cross-validation skill of 1960–2002 YRV summer rainfall prediction shows that the new scheme produces a skillful PDF prediction, and is much better-calibrated, sharper, and more accurate than the earlier Bayesian ensemble and raw ensemble.  相似文献   

15.
A verification framework for interannual-to-decadal predictions experiments   总被引:2,自引:1,他引:1  
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.  相似文献   

16.
郭彦  李建平 《大气科学》2012,36(2):385-396
针对预报量变化中存在受不同物理因子控制的不同时间尺度变率特征, 本文提出了分离时间尺度的统计降尺度模型。应用滤波方法, 将不同尺度的变率分量分开, 在各自对应的时间尺度上利用不同的大尺度气候因子分别建立降尺度模型。华北汛期 (7~8月) 降水具有年际变率和年代际变率, 本文以华北汛期降水为例利用分离时间尺度的统计降尺度模型进行预测研究。采用的预报因子来自海平面气压场、 500 hPa位势高度场、 850 hPa经向风场和海表温度场以及一些已知的大尺度气候指数。利用基于交叉检验的逐步回归法建立模型。结果表明, 年际尺度上, 华北汛期降水与前期6月赤道中东太平洋海温以及同期中国东部的低层经向风密切相关; 年代际尺度上, 在东印度洋—西太平洋暖池海温的作用下, 华北降水与前期6月西南印度洋海平面气压有同步变化关系。年际模型和年代际模型的结果相加得到对总降水量的降尺度结果。1991~2008年的独立检验中, 模型估计的降水和观测降水的相关系数是0.82, 平均均方根误差是14.8%。结合模式的回报资料, 利用降尺度模型对1991~2001年的华北汛期降水进行回报试验。相比于模式直接预测的降水, 降尺度模型预测的结果有明显改进。改进了模式预测中年际变率过小的问题, 与观测降水的相关系数由0.12提高到0.45。  相似文献   

17.
S. Kravtsov 《Climate Dynamics》2012,39(9-10):2377-2391
This paper assesses potential predictability of decadal variations in the El Ni?o/Southern Oscillation (ENSO) characteristics by constructing and performing simulations using an empirical nonlinear stochastic model of an ENSO index. The model employs decomposition of global sea-surface temperature (SST) anomalies into the modes that maximize the ratio of interdecadal-to-subdecadal SST variance to define low-frequency predictors called the canonical variates (CVs). When the whole available SST time series is so processed, the leading canonical variate (CV-1) is found to be well correlated with the area-averaged SST time series which exhibits a non-uniform warming trend, while the next two (CV-2 and CV-3) describe secular variability arguably associated with a combination of Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO) signals. The corresponding ENSO model that uses either all three (CVs 1–3) or only AMO/PDO-related (CVs 2 and 3) predictors captures well the observed autocorrelation function, probability density function, seasonal dependence of ENSO, and, most importantly, the observed interdecadal modulation of ENSO variance. The latter modulation, and its dependence on CVs, is shown to be inconsistent with the null hypothesis of random decadal ENSO variations simulated by multivariate linear inverse models. Cross-validated hindcasts of ENSO variance suggest a potential useful skill at decadal lead times. These findings thus argue that decadal modulations of ENSO variability may be predictable subject to our ability to forecast AMO/PDO-type climate modes; the latter forecasts may need to be based on simulations of dynamical models, rather than on a purely statistical scheme as in the present paper.  相似文献   

18.
Assessing the skill of the Atlantic meridional overturning circulation (AMOC) in decadal hindcasts (i.e. retrospective predictions) is hampered by a lack of observations for verification. Models are therefore needed to reconstruct the historical AMOC variability. Here we show that ten recent oceanic syntheses provide a common signal of AMOC variability at 45°N, with an increase from the 1960s to the mid-1990s and a decrease thereafter although they disagree on the exact magnitude. This signal correlates with observed key processes such as the North Atlantic Oscillation, sub-polar gyre strength, Atlantic sea surface temperature dipole, and Labrador Sea convection that are thought to be related to the AMOC. Furthermore, we find potential predictability of the mid-latitude AMOC for the first 3–6 year means when we validate decadal hindcasts for the past 50 years against the multi-model signal. However, this predictability is not found in models driven only by external radiative changes, demonstrating the need for initialization of decadal climate predictions.  相似文献   

19.
There are two main approaches for dealing with model biases in forecasts made with initialized climate models. In full-field initialization, model biases are removed during the assimilation process by constraining the model to be close to observations. Forecasts drift back towards the model’s preferred state, thereby re-establishing biases which are then removed with an a posterior lead-time dependent correction diagnosed from a set of historical tests (hindcasts). In anomaly initialization, the model is constrained by observed anomalies and deviates from its preferred climatology only by the observed variability. In theory, the forecasts do not drift, and biases may be removed based on the difference between observations and independent model simulations of a given period. Both approaches are currently in use, but their relative merits are unclear. Here we compare the skill of each approach in comprehensive decadal hindcasts starting each year from 1960 to 2009, made using the Met Office decadal prediction system. Both approaches are more skilful than climatology in most regions for temperature and some regions for precipitation. On seasonal timescales, full-field initialized hindcasts of regional temperature and precipitation are significantly more skilful on average than anomaly initialized hindcasts. Teleconnections associated with the El Niño Southern Oscillation are stronger with the full-field approach, providing a physical basis for the improved precipitation skill. Differences in skill on multi-year timescales are generally not significant. However, anomaly initialization provides a better estimate of forecast skill from a limited hindcast set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号