首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
长江中游两次MCC过程环境流场及物理条件分析   总被引:1,自引:0,他引:1  
利用常规气象资料、GFS05°×05°再分析资料以及云图资料,分析了2007年长江中游2例中尺度对流复合体(MCC)的大尺度环境场和物理量特征。结果表明:①MCC是低槽云系尾部由几个β、α中尺度云团合并增强结果,合并是其形成最重要的一个因子;②MCC发生在有利的天气形势背景下,中层有短波槽、低层有冷暖切变线和范围宽广的西南急流带,强盛西南急流给暴雨区提供充足的动力、水汽、不稳定条件。西南暖湿气流维持、边界层暖切变线形成且稳定少动对MCC形成起关键作用,在低层冷切尾部和暖切顶部,干冷与暖湿空气交汇出现锋生导致上升运动加强,激发不稳定能量释放,MCC在此处形成。能量锋生与高空急流右后侧辐散气流耦合可能是导致MCC发展主要动力强迫机制;③MCC环境流场表现为对流层上部为反气旋性辐散环流,中层和低层均为气旋性辐合环流,从低层到中层正涡度柱连成一片,形成深厚垂直正涡度柱,中低层深厚辐合为MCC维持提供了有利动力条件。  相似文献   

2.
两个不同降水量级的MCC对比分析   总被引:3,自引:0,他引:3       下载免费PDF全文
为提高MCC致洪暴雨的预报能力,利用卫星云图、MICAPS系统提供的实况资料、物理量和NCEP再分析资料,对2008年5~6月发生在四川东北部和重庆西部的两次MCC降水过程进行了对比分析.结果表明,大降水MCC,200 hPa影响系统中尺度特征明显,大气层结是对流不稳定的,且邻近上游对流层低层出现的中尺度强下沉运动为不...  相似文献   

3.
淮河流域一次MCC的环境流场及动力分析   总被引:1,自引:1,他引:0  
利用卫星云图和高空风等各种天气学资料,对2006年7月2日淮河流域发生的一次中尺度对流复合体(MCC)和淮河流域暴雨天气过程进行了大尺度环境场和物理量的诊断分析。结果表明:MCC是造成暴雨的直接影响系统,对流层中层来自北方的干侵入对MCC的生成发展起着重要作用;对流层低层华北冷空气的南下锋生、对流层中低层西南气流沿锋面爬升,为MCC的生成提供了触发机制;高低空急流耦合、天气尺度经向间接次级环流圈的形成,为MCC的生成、发展和维持提供了动力条件;对流层低层能量场特征、风速风向垂直切变特征、总指数及云图弓状回波后部干侵入区的变化等,对MCC的生成和发展有指示意义。  相似文献   

4.
尽管每年美国中部有许多对流系统出现,但一些对流复合体的碎云砧消散或移走之后,在卫星云图上只有少数可以很好地确定为典型的中层涡旋.本文介绍1981-1988年中尺度对流系统生成涡旋(MCV)事件的气候分析结果,并讨论涡旋环流明显时的天气背景.针对许多个例,用最近的探测资料考查了卫星云图判别的MCVs每个发展阶段的运动学和热力学特征.对MCVs的形成和维持似乎有益的大尺度环境场特征包括弱的气流、弱的垂直切变、弱的环境相对涡度以及强的水平和垂直湿度梯度.可以用涡度方程的形变项解释观测到的中尺度涡旋快速生成的情形. 大多数MCVs出现在MCC型(即圆形的)系统中,但所有记录的个例(1981-1988出现在美国中部的24次事件)中只有一半起源于那些在大小和生命期上满足Maddox严格的MCC判据.此外,因为一些MCVs从尺度小且生命期相对短的对流系统中出现,所以,天气背景以及潜热释放的数量可能成为决定MCSs是否导致MCVs产生的重要控制因子.大多数MCVs(80%)首先在40°N以南观测到.既然许多对流系统在40°N以北形成,所以,MCVs在偏北地区稀少的现象并不是该地区缺乏对流系统的结果.  相似文献   

5.
和α中尺度对流复合体(Mesoscale Co-nvective Complex,缩写为 MCC)联系的β中尺度的时空特征,已被综合成一个生命史概念模式(Conceptual lifecycle model)。这个模式将作为一个工具,有效地用于改进MCCs 的短期预报。这个模式包括与 MCC的卫星云图形状有关的降水分布的特征模式。每个 MCC 都是多个β中尺度对流串在先,这对流串是沿着α中尺度特征线排列的。这个特征在每小时地面和卫星资料上表现很明显。MCC 的增长集中在这些β中尺度串地方,这些β中尺度对流串沿着α中尺度特征交接线排列,且离交接线最近。在 MCC的整个成熟阶段,多个β中尺度对流在扩展的砧状降水区内持续活动,系统的衰减标志是β中尺度对流的减弱和传播扩散移走。曾用独立个例和这个概念模式做了简要对比。  相似文献   

6.
利用常规观测、地面加密观测、卫星云图以及tBB等资料,对比分析2007年8月8—9日中尺度对流复合体(MCC)与2006年6月2—3日一般暴雨云团之间发生发展环境场的差异。结果表明:暴雨云团发生在对流层低层切变线中,高层急流人口区的右侧;MCC的发生,低层除了有中尺度低涡外,还有台风的影响。MCC对高温高湿能量的需求比中尺度暴雨云团更高,要求高能舌范围更广、更深厚,对流不稳定区范围更大。MCC发生在高层南亚高压北侧的反气旋环流与低涡耦合的强烈上升运动区,中尺度暴雨云团则发生在急流人口区的右侧与低层切变线耦合产生的次级环流上升运动区。  相似文献   

7.
东北地区一次短时大暴雨β中尺度对流系统分析   总被引:10,自引:1,他引:9  
为了探寻东北短历时暴雨的预报线索,利用自动站、卫星和常规气象观测资料相结合的方法,研究2006年8月10日最大1 h雨量达到90.8 mm(泰来,其中,后半小时降水82 mm)的东北中西部百年一遇短历时特大暴雨中尺度对流系统(MCS)发展过程,及其发生的天气尺度背景和中尺度环境与触发机制.通过红外卫星云图和高分辨率的可见光云图,分析MCS如何从一个γ中尺度发展为α中尺度对流复合体(MCC)的过程.分析表明,与6个市(县)半小时雨量超过33 mm相关联的MβCS分别发生在2个阶段,第1阶段在MCC形成之前,MβCS主要向东移动(最后合并成MCC),第2阶段,在MCC成熟阶段.MpCS出现在MCC的西南边缘,而且最强短历时暴雨就发生在这里.从分辨率更高的可见光云图上可以发现,有北、西两条积云线,它们交汇的地方MβCS强烈发展并产生暴雨.分析MCS加强和产生暴雨的原因表明:(1)暴雨发生前夕暴雨区域具有高温、高湿和对流性不稳定层结,并存在明显的对流有效位能增加、抬升凝结高度及自由对流高度降低的现象,有利于暴雨发生;(2)β中尺度云团之间的合并,使MCS迅速发展,产生暴雨;(3)北、西两条积云线分别与地面风场中的两条辐合线相对应,在它们交汇处的较强辐合导致β中尺度云团强烈发展产生暴雨.分析MCS在MCC西南方向传播的原因表明,两条辐合线的移动方向和速度决定了暴雨MCS的传播方向.另外,偏北气流的出现和新老云团的新陈代谢过程是触发暴雨的关键因素.上述分析结果也为短历时暴雨的预报提供了有用的线索.  相似文献   

8.
一次MCS过程的特征分析   总被引:6,自引:4,他引:2       下载免费PDF全文
对2010年9月7-8日江苏北部的中尺度对流系统(MCS)特征和暴雨过程进行了分析,应用卫星云图、热力和动力物理量诊断.结果表明:MCS是由若干个α和β中尺度对流云团组成,在MCS成熟阶段有一个逐渐发展成中尺度对流复合体(MCC)的过程;MCS出现在高温高湿对流不稳定的环境中,低层低涡的辐合和锋面的抬升作用为其提供了动力条件;强水中心与MCS云顶温度梯度最大值中心相对应,为暴雨落区预报提供了着眼点.  相似文献   

9.
利用MICAPS2.0平台对东北北部连续2次中尺度对流复合体(MCC)的云图演变和环境物理量场特征分析,揭示了盛夏该地区MCC生成、发展的环境条件。结果表明:MCC发生在副高北侧深厚的高能舌、对流不稳定的气层中,500hPa东移短波槽是MCC的触发系统;高、低空急流和低层辐合场对MCC的生成和发展具有重要作用。  相似文献   

10.
MCC和一般暴雨云团发生发展的物理条件差异   总被引:6,自引:5,他引:6       下载免费PDF全文
利用NCEP/NCAR 1°×1°再分析资料和GMS红外辐射亮温(TBB)资料,研究了2002年6月22日的中尺度对流复合体(MCC)和7月23日的一般暴雨云团两者之间发生发展的环境场差异。结果表明,MCC发生在较弱的斜压环境里,对流层低层有明显的天气系统如切变线、中尺度低涡,中层可以没有低压槽参与,高层则出现在反气旋环流里。普通暴雨云团低层的影响天气系统和MCC类似,但中层往往和槽线相联系,高层则出现在急流入口区右侧。MCC对高温高湿能量的需求比一般暴雨云团更高,如要求高能舌范围更广、更深厚,对流不稳定区范围更大。MCC的动力强迫主要在低层,和较大的θse梯度联系密切,而一般暴雨云团的高空槽强迫作用显得更重要。  相似文献   

11.
“0811”暴雨过程中MCC与一般暴雨云团的对比分析   总被引:3,自引:0,他引:3  
利用T639 1°×1°分析场、FY-2红外云图、红外辐射亮温(TBB)、闪电定位和气柱水汽总量等资料,对2010年8月11日发生在山西南部暴雨过程(即"0811"暴雨过程)中的中尺度对流复合体(MCC)和其北部的一般暴雨云团进行了对比分析,结果表明,(1)山西北部暴雨带主要由6个β中尺度对流云团生成、发展及合并造成;山西南部区域性暴雨则由MCC的生成、发展、东移所引发。(2)山西北部的暴雨云团在850hPa暖切变线南部生成和发展,并在地面切变线附近合并;山西南部的MCC由3个β中尺度对流云团发生、发展及合并形成,该对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随西太平洋副热带高压的南退而南压。(3)在西太平洋副热带高压西进北抬的背景下,同一次暴雨过程中,MCC发生在5 880gpm边缘弱的斜压环境中,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5 840gpm边缘较强的斜压环境中,高层则出现在急流入口区的右侧。(4)MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌及暖温结构更深厚。(5)山西南部MCC影响区和5 880gpm线边缘为负地闪覆盖区,正地闪主要出现在其北部一般暴雨云团影响区和5 840gpm线附近。与MCC相比,一般暴雨云团影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。(6)山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋南侧气柱水汽总量的大值区。气柱水汽总量对"0811"暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

12.
分析结果表明:①山西北部的暴雨云团在850hPa暖切变线南部生成、发展,并在地面切变线附近合并;山西南部的MCC由3个B中尺度对流云团发生、发展、合并形成,β中尺度对流云团在700hPa次天气尺度切变线上触发生成;MCC发展、成熟阶段,α中尺度云团沿925hPa暖切变线东移;减弱阶段,随副高的南压而南压。②副高西进北抬背景下,同一次暴雨过程中,MCC发生在5880gpm边缘弱的斜压环境里,高层则出现在高压北侧的反气旋环流中;一般暴雨云团发生在5840gpm边缘较强的斜压环境里,高层则出现在急流人口区的右侧。③MCC作为大型的中尺度对流系统,不但对低层高温高湿能量的需求比一般暴雨云团更多,而且在垂直方向上,要求湿层、高能舌、暖温结构更深厚。④南部MCC影响区及5880gpm线边缘为负地闪覆盖区,正地闪主要出现在北部一般暴雨云团影响区及5840gpm线附近。一般暴雨云团影响下比MCC影响下,局地闪电开始及闪电峰值的出现较降水的开始及降水峰值的出现有更多的提前量。⑤山西北部暴雨云团出现在气柱水汽总量梯度的大值区及水汽锋上;山西南部MCC则出现在水汽锋的南侧气柱水汽总量的大值区。气柱水汽总量对0811暴雨过程有36h的提前量,对暴雨的落区有很好的指示意义。  相似文献   

13.
利用NCEP/NCAR的1°×1°再分析资料、地面常规观测、FY-2E卫星TBB资料,对2014年5月8—9日发生在华南南部的一次暖区暴雨过程进行了研究。得出以下结论:1)第1阶段暴雨发生变性高压脊后部,未受冷空气影响,属于华南典型的回流暖区暴雨过程,第2阶段在东路弱冷空气的触发下再次产生暴雨,属于非典型回流暖区暴雨。2)1个中α尺度MCC和1个中β尺度MCS是该次广东大暴雨直接制造者,其中MCS-D在广西境内生成并逐渐东移,多个对流系统的并入延长了MCS-D的生命史,最后形成中α尺度MCC。3)东南气流是该次暴雨的主要水汽来源,中层小股干冷空气侵入,高层强烈辐散、深厚的上升运动的配置条件有利于中尺度对流系统发展和维持。4)区域自动站风场资料分析表明,夜间陆风(偏北风)与加强的东南风在112.5°E附近的汇合,可能触发了中尺度对流系统MβCS-H的生成。  相似文献   

14.
2006年7月3日傍晚到4日凌晨,苏北到黄海的一个中尺度对流复合体(MCC)产生了系列龙卷、直线型对流大风和强降水,利用常规高空地面观测、区域自动气象站、卫星云图以及多普勒天气雷达资料,详细分析此次中尺度对流复合体的结构和产生的天气背景。主要结论如下:(1)该中尺度对流复合体高层为对应分离背景场的强辐散,中层在副热带高压西北侧和500 hPa东移的短波槽前,地面位于锋面气旋暖区内;该中尺度对流复合体发生在中等到强的对流有效位能、强的深层(0—6 km)和低层(0—1 km)风垂直切变环境下;(2)该中尺度对流复合体主要垂直环流特征为:近地层东南气流和其上的中低层西南暖湿气流从对流复合体南部流入到复合体中心,复合体后部对流层中低层和中层为较干冷的西北气流夹卷进入中尺度对流复合体,导致降水蒸发冷却形成强烈下沉气流,产生带有西北风动量的下沉气流,到地面形成β中尺度冷池,冷池与周边暖湿气流的交界处为β中尺度阵风锋,同时中尺度对流复合体位于对流层低层到地面部分形成深厚冷池导致的雷暴高压,阵风锋前部有β中尺度暖低压;中尺度对流复合体中高层由于水汽凝结潜热释放加热形成暖心结构,位于对流层中层的主要特征为β中尺度气旋性涡旋对应的中尺度低压,对流层高层存在β中尺度辐散反气旋环流;(3)多普勒天气雷达探测揭示该中尺度对流复合体成熟阶段主要呈现为线性结构,主要构成是一条尺度在150—200 km的活跃弓形飑线,还有数条较弱的呈气旋性弯曲的对流雨带,雨带旋入共同的涡旋中心,该涡旋中心与地面锋面气旋的中心相对应(重合),同时也是相应中尺度对流复合体的β中尺度气旋的中心,直径为40—60 km;(4)在上述活跃弓形飑线的前侧出现多个中尺度涡旋,4个EF2级龙卷和3个EF1级龙卷都发生在这些中尺度涡旋内,导致龙卷的中尺度涡旋水平尺度为4—5 km,旋转速度接近超级单体的强中气旋旋转速度,垂直伸展比超级单体中气旋浅薄,形成机制也与超级单体中气旋有明显差异;(5)该中尺度对流复合体成熟阶段的云系尺度为1000 km,其中低于220 K (-52℃)冷云盖的尺度在400 km左右,其内部结构的主要构成是一条150—200 km长的活跃弓形飑线,地面β中尺度冷池和阵风锋,沿着弓形飑线前侧出现多个尺度为4—5 km的中尺度涡旋,其中部分中尺度涡旋导致尺度只有几十至几百米的EF1和EF2级龙卷,呈现出明显的多尺度结构特征。   相似文献   

15.
一次东北冷涡不同阶段强对流天气特征对比分析   总被引:3,自引:0,他引:3  
利用NCAR/NCEP再分析(1?×1?)资料、区域自动站观测、FY-2D/2E卫星观测和GPS/MET水汽监测等资料,对2012年6月7-18日长春地区发生在同一东北冷涡系统不同演变阶段的3次强对流天气进行对比诊断分析。结果表明:在冷涡形成期,高低空急流耦合产生的次级环流上升支,触发锋前不稳定能量释放,导致中β尺度孤立深厚湿对流系统出现;在冷涡发展期,对流层高层干冷空气向对流层中下层侵入,形成高空露点锋,触发有组织的中α尺度对流系统;在冷涡消亡期,低涡减弱为高空槽并快速东移,其后部冷空气置于低层大范围暖湿空气之上,地面中尺度辐合触发不稳定能量释放,形成中β尺度对流系统。  相似文献   

16.
通过对常规观测资料、自动站资料、GMS-5卫星云图和多普勒雷达等气象资料分析发现, 2001年8月热带低压在福建北部登陆, 途经江苏无锡、常熟时, 其南侧西南气流与沪浙沿海的东南风形成切变线。受源源不断地水汽输送和切变线动力抬升作用, 热带低压南侧不断产生β-中尺度强对流回波带, 它们形成后随热带低压气旋性环流向东移动, 在上海城区附近辐合形成β-中尺度强对流回波群, 在卫星云图上呈现出以此为核心的中尺度对流辐合体 (MCC)。分析表明, 受水汽凝结、潜热释放这种正反馈机制作用, 在热带低压东南侧大尺度切变线中段北侧派生出一个独立、完整的近地面β-中尺度的气旋性环流, 它就是MCC的内核, 直接造成了上海“ 0185”特大暴雨的发生。  相似文献   

17.
高纬地区罕见的MCC卫星云图特征分析   总被引:1,自引:0,他引:1  
2005年7月16日夜间在黑龙江省中北部的黑河、伊春、齐齐哈尔等地出现了罕见的MCC,产生了雷暴、冰雹、暴雨等强对流天气,利用FY-2卫星云图和相关资料,对本次MCC的特征进行了分析,并与本地非MCC强降水天气、其他地区MCC进行对比分析,为高纬度地区预报这类灾害性天气提供依据.  相似文献   

18.
华南一次典型MCC过程的成因及天气分析   总被引:4,自引:1,他引:4  
刘峰  李萍 《气象》2007,33(5):77-82
利用常规资料、FY2C红外TBB等资料分析了2006年5月6日发生在华南地区的一次典型MCC过程,发现在具备充足的水汽和不稳定层结条件下,地面冷空气的辐合抬升作用和高低空急流的耦合是此次MCC形成和发展的关键,同时“喇叭口”地形以及下垫面温度日变化也起着重要作用。利用广州白云机场的多普勒雷达和地面自动站资料对MCC内部的飑线进行实时监测,得到低空风切变对机场的影响情况。  相似文献   

19.
夏季黄河下游地区中尺度对流系统的气候特征分布   总被引:5,自引:1,他引:4  
卓鸿  赵平  李春虎  蒲章绪 《大气科学》2012,36(6):1112-1122
利用1996~2008年逐小时卫星资料、NCEP再分析资料及统计方法, 研究了位于黄河下游地区的中尺度对流系统(Mesoscale Convective System, 简称MCS)的气候特征, 其中包括中尺度对流复合体(Mesoscale Convective Complex, 简称MCC)、持续拉长状对流系统(Permanent Elongated Convective System, 简称PECS)、β中尺度对流复合体(Meso-β Scale MCC, 简称MβCCS>)、β中尺度持续拉长状对流系统(Meso-β Scale PECS, 简称MβECS)4类。结果表明:MCC和PECS是黄河下游地区影响夏季降水的主要MCS, 其中7月份MCC最多, 并且MCC的数量明显大于PECS;与发生在美国的MCS比较, 发生在黄河下游地区的MCC和PECS在成熟期的面积和平均偏心率较大、生命史较长, 但MβCCS和MβECS的生命史较短、平均偏心率变化不大;黄河下游地区PECS表现出成熟较快和消亡较慢的特征, 其最低相当[A1] 黑体温度 (BlackBody Temperature, 缩写为TBB) 平均值为-72℃, 比MCC低1℃左右, 生命史比MCC长0.9 h;在MCC的形成、成熟及消亡期, 其日循环特征均表现为明显的双峰特征, 而PECS却呈现出单峰特征;黄河下游地区MCC的发生时间主要集中在2个时段, 一个是在下午形成, 傍晚成熟, 凌晨消亡, 另一个则在后半夜形成, 凌晨成熟, 上午甚至中午才消亡;MCS具有明显的年际变化特点, 在MCS较少的1999年, 500 hPa的副热带高压偏南, 华北地区位势高度较常年明显偏高, 而在MCS较多的2001年, 副高异常偏强, 华北地区位势高度较常年明显偏低, 850 hPa上为一低压槽, 黄河下游地区主要受副高边缘的西南气流影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号