首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
半干旱区植被覆盖度对边界层气候热力影响的数值模拟   总被引:14,自引:0,他引:14  
在陆-气相互作用的中小尺度系统研究中,水平非均匀下垫面的强迫作用是主要的物理过程。本文利用能量闭合二维陆面过程与大气边界层耦合模式,研究了我国西北半干旱地区(38°N,105°E)夏季下垫面物理特征的变化对区域边界层气候的影响。结果表明:土壤湿度、植被覆盖度对局地环流和区域边界层气候的形成起着决定性的作用。模拟结果揭示了在半干旱地区大面积植树造林、提高植被覆盖度,可涵养土壤水分,改善局地生态环境,是人工持续改造干旱、半干旱荒漠地区局地气候的重要途径。  相似文献   

2.
Landscape heterogeneity that causes surface flux variability plays a very important role in triggering mesoscale atmospheric circulations and convective weather processes. In most mesoscale numerical models, however, subgrid-scale heterogeneity is somewhat smoothed or not adequately accounted for, leading to artificial changes in heterogeneity patterns (e.g., patterns of land cover, land use, terrain, and soil types and soil moisture). At the domain-wide scale, the combination of losses in subgrid-scale heterogeneity from many adjacent grids may artificially produce larger-scale, more homogeneous landscapes. Therefore, increased grid spacing in models may result in increased losses in landscape heterogeneity. Using the Weather Research and Forecasting model in this paper, we design a number of experiments to examine the effects of such artificial changes in heterogeneity patterns on numerical simulations of surface flux exchanges, near-surface meteorological fields, atmospheric planetary boundary layer (PBL) processes, mesoscale circulations, and mesoscale fluxes. Our results indicate that the increased heterogeneity losses in the model lead to substantial, nonlinear changes in temporal evaluations and spatial patterns of PBL dynamic and thermodynamic processes. The decreased heterogeneity favor developments of more organized mesoscale circulations, leading to enhanced mesoscale fluxes and, in turn, the vertical transport of heat and moisture. This effect is more pronounced in the areas with greater surface heterogeneity. Since more homogeneous land-surface characteristics are created in regional models with greater surface grid scales, these artificial mesoscale fluxes may have significant impacts on simulations of larger-scale atmospheric processes.  相似文献   

3.
The impact of well watered mesoscale wheat over mid-latitude arid areas on mesoscale boundary layer structures (MBLS) and climate has been investigated in the study .using a mesoscale biophysical, meteorological model (BM) developed in the current study. The BM is composed of six modules:mesoscale atmospheric module, soil module, vegetation module, snow-atmosphere interaction module, underlying surface meteorology module and subgrid scale flux parameterization module. The six modules constitute an interacting system by supplying boundary conditions to each other.The investigation indicates that a horizontal pressure gradient associated with mesoscale perturbations in temperature and humidity is created during the day, which results from more water transpired from the vegetation canopy (VC) and evaporated from underlying wet soil. Non-classical mesoscale circulations (called as vegetation-breeze) are forced by the pressure perturbations with wind speeds about 5 m / s, flowing from the VC to the adjacent  相似文献   

4.
In this paper,an interactive model between land surface physical process and atmosphereboundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures ofatmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged inprimary physics parameters.The results show that this model can obtain reasonable simulation fordiurnal variations of heat balance,soil volumetric water content,resistance of vegetationevaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulentmomentum,potential temperature,and specific humidity.The model developed can be used tostudy the interaction between land surface processes and atmospheric boundary layer in cityregions,and can also be used in the simulation of regional climate incorporating a mesoscalemodel.  相似文献   

5.
黄土高原植被变化对环境影响的数值模拟   总被引:4,自引:10,他引:4  
梁玲  吕世华  柳媛普 《高原气象》2006,25(4):575-582
使用美国NCAR新版MM5非静力平衡模式,模拟了黄土高原2003年6月26~30日的一次降水过程。该试验是通过改变黄土高原局部地区植被覆盖情况,对比分析植被改变区域内各气象要素的变化情况。结果表明:植被改善能使雨量增加,径流量减小,湿度增大,温度日较差减小,使气候变的温和。植被退化却使雨量减少,径流加大,易使水土流失,对水土保持不利。试验较全面地揭示了非均匀地表大气边界层内的温、湿场与陆面相互作用的机理。  相似文献   

6.
The need for a well-defined lower boundary condition for atmospheric numerical models is well documented. This paper describes the formulation of a land surface parameterization, which will be used in atmospheric boundary-layer and mesoscale numerical models. The land surface model has three soil layers for the prediction of soil moisture and soil temperature. Model soil properties depend on soil texture and moisture content. A homogeneous distribution of vegetation is also included, so that transpiration may be included, as well as the interception of precipitation by vegetation elements. The simulated vegetation also affects the mean surface albedo and roughness characteristics.First ISLSCP Field Experiment (FIFE) data are used to verify the model. Three cases during the growing season were chosen, each case having different amounts of vegetation cover. Stand alone simulations, where observations of atmospheric and radiation variables are input to the land surface model, were performed. These simulations show that the model is able to reproduce observed surface energy budgets and surface temperatures reasonably well. The RMS differences between modeled and obsered turbulent fluxes of heat and moisture are quite comparable to those reported by more detailed land surface models.  相似文献   

7.
In this paper,an interactive model between land surface physical process and atmosphere boundary layer is established,and is used to simulate the features of soil environmental physics,surface heat fluxes,evaporation from soil and evapotranspiration from vegetation and structures of atmosphere boundary layer over grassland underlying.The sensitivity experiments are engaged in primary physics parameters.The results show that this model can obtain reasonable simulation for diurnal variations of heat balance,soil volumetric water content,resistance of vegetation evaporation,flux of surface moisture,and profiles of turbulent exchange coefficient,turbulent momentum,potential temperature,and specific humidity.The model developed can be used to study the interaction between land surface processes and atmospheric boundary layer in city regions,and can also be used in the simulation of regional climate incorporating a mesoscale model.  相似文献   

8.
Land-use practices such as deforestation or agricultural management may affect regional climate, ecosystems and water resources. The present study investigates the impact of surface heterogeneity on the behaviour of the atmospheric boundary layer (ABL), at a typical spatial scale of 1 km. Large-eddy simulations, using an interactive soil–vegetation–atmosphere surface scheme, are performed to document the structure of the three-dimensional flow, as driven by buoyancy forces, over patchy terrain with different surface characteristics (roughness, soil moisture, temperature) on each individual patch. The patchy terrain consists of striped and chessboard patterns. The results show that the ABL strongly responds to the spatial configuration of surface heterogeneities. The stripe configuration made of two patches with different soil moisture contents generates the development of a quasi- two-dimensional inland breeze, whereas a three-dimensional divergent flow is induced by chessboard patterns. The feedback of such small-scale atmospheric circulations on the surface fluxes appears to be highly non-linear. The surface sensible and latent heat fluxes averaged over the 25-km2 domain may vary by 5% with respect to the patch arrangement.  相似文献   

9.
陆面过程和大气边界层相互作用敏感性实验   总被引:18,自引:1,他引:18  
文中建立了一个研究陆面物理过程与大气边界层相互作用的模式。模拟了草原下垫面的土壤 环境物理、地面热量通量、蒸发、蒸散及大气边界层结构特征。并对主要的环境物理参数进 行了敏感性实验。结果表明,本模式能合理地模拟地表热量平衡、土壤体积含水量、植被蒸 发阻抗、地表水汽通量日变化和湍流交换系数、湍流动能、位温和比湿廓线等。该模式还可 进一步应用于研究城市陆面物理过程与大气边界层相互作用机制,及与中尺度大气模式耦合用于区域气候的研究。  相似文献   

10.
Summary In this work, simulations with the mesoscale meteorological model FOOT3DK for a semi-arid research site in southern morocco are presented. The main aim of this study is to introduce two different ways to improve the soil moisture distribution towards a more realistic pattern. One of them resembles the availability of groundwater resources below the lower boundary of the soil part of the model, the other one resembles irrigation practices in the region. Additionally, we introduce a newly derived land use/land cover data set obtained from analysis of LANDSAT data and compare the simulation results to those obtained with the USGS GLCC data. To evaluate the results with the refinements in soil moisture and land use/land cover, we focus on evapotranspiration, as the quantity which is most tentative to the changes in soil moisture and is an important part of the local hydrological cycle. To evaluate the importance of sub-grid scale surface heterogeneity in soil moisture and land use/land cover, we present simulations with enhanced surface resolution. Simulation results are compared to point measurements at different sites in the research area for validation.The results show, that a deep groundwater table and irrigation of parts of the research area can be represented by the methods we used. Simulated transpiration is overestimated compared to measured values, but this is due to the maximum approach used in this work. Finer tuning of the artificial enhancement of soil moisture with the two methods presented here are expected to lead to realistic distributions of evapotranspiration and related quantities, therewith drastically enhancing simulation accuracy for this site. As uncertainties of soil moisture distribution and restricted representation of soil moisture dynamics in meteorological models is a common problem especially for arid and semi-arid sites, we expect our results to be useful for meteorological simulations in other arid or semi-arid areas as well.  相似文献   

11.
Based on the basic principles of atmospheric boundary layer and plant canopy micrometeorology, a forest underlying surface land surface physical process model and a two-dimensional atmospheric boundary layer numerical model are developed and numerical simulation experiments of biosphere and physiological processes of vegetation and soil volumetric water content have been done on land surface processes with local climate effect. The numerical simulation results are in good agreement with realistic observations, which can be used to obtain reasonable simulations for diurnal variations of canopy temperature, air temperature in canopy, ground surface temperature, and temporal and spatial distributions of potential temperature and vertical wind velocity as well as relative humidity and turbulence exchange coefficient over non-homogeneous underlying surfaces. It indicates that the model developed can be used to study the interaction between land surface process and atmospheric boundary layer over various underlying surfaces and can be extended to local climate studies. This work will settle a solid foundation for coupling climate models with the biosphere.  相似文献   

12.
13.
杨志勇  朱平  蒋瑞宾 《气象》1998,24(4):3-10
建立了一个研究大气、植被、土壤相互作用的传播模式。模式是由多层大气模式、多层土壤模式和植被模式通过界面上能量、水汽传输平衡方程耦合而成。对植被和土壤的不同性质,进行了一系列的数值试验。结果表明,不同的植被覆盖以及降水等因子会对大气、植被、地表界面上能量、水汽传输以及热状态产生显著的影响。此模式还可以耦合进中尺度模式用以研究非均匀区域陆面过程和大气的相互作用。  相似文献   

14.
A simple parameterization of land surface processes, amenable to the structure of a two-layer soil model, including a representation of the vegetation, has been designed for use in meteorological models. Prior to implementation in a mesoscale model, it is necessary to check the components and to verify the good working order of the parameterization as a whole. The aims of this paper then are: (i) evaluation and a sensitivity study of the various components of the model, specifying the needed accuracy for the parameters; (ii) micrometeorological validation of the model against the HAPEX-MOBILHY data set.First, we present the basic scheme. The focus is on the parameterization of surface resistance, and especially on its relationship with soil moisture.A sensitivity study is then performed through a set of one-dimensional simulations which allow a full interaction between the ground and the atmosphere. Above bare ground, it is shown that both soil texture and initial moisture greatly influence the outcome of the simulation. Latent heat flux ranges from that associated with potential evaporation through a switch-like behavior to that of dry soil. Next, the effects of transpiring vegetation canopies on the physical processes involved and the surface energy balance are examined. The sensitivity of the latent heat flux to changes in the soil and canopy parameters is emphazised; the major influence of the initial mean soil moisture and of the vegetation cover is pointed out. Finally, the evolution of the boundary layer in response to various surface conditions is studied.A validation of the land surface scheme is conducted through daily cycles during cloudless days. Simulated turbulent fluxes are successfully compared to micrometeorological measurements over a maize field at different growth stages. Over a pine forest, the correct simulation of the turbulent fluxes is obtained with an adequate parameterization of the surface resistance accounting for the atmospheric moisture deficit.  相似文献   

15.
The impact of mesoscale moisture variability on the vertical energy transfer through a pre-frontal boundary layer is studied with NOPEX aircraft data. The moisture variability relates to a cold front that passed the area 2 1/2 hours after the observations. We find a density front ahead of the cold front. The large vertical divergence of the turbulent moisture flux in the surface layer is partly related to this moisture variability. Large scale horizontal advection contributes to the observed vertical turbulent flux divergence. The estimated horizontal mesoscale advection term in the budget of sensible heat and moisture is on average small but locally it can be large. This term acts to re-distribute moisture in the boundary layer and leads to sub-grid variations of relative humidity, which is an important quantity for boundary-layer cloud models. The distinct spatial variations of specific humidity are mainly related to synoptic forcing and not to heterogeneity in the surface energy balance.  相似文献   

16.
A numerical model has been developed for simulating land-surface processes and atmosphericboundary layer climate of vegetation and desert in semi-arid region.Dynamically,thermal andhydrological processes take place in the atmospheric boundary layer.Vegetation and surface layerof soil are included in the soil-vegetation-atmosphere coupled system,in which,vegetation isconsidered as a horizontally uniform layer,soil is divided into 13 layers and the horizontaldifferences of variables in the system are neglected.The influence of local boundary layer climateby vegetation cover factor is simulated with the coupled model in the semi-arid region of NorthwestChina (around 38°N,105°E).Results indicate that due to significant differences of water andenergy budgets in vegetation and desert region,the air is colder and wetter over the vegetation andcorrespondingly an obvious local circulation in the lower atmosphere is formed.Simulating results also show that maximum updraft and downdraft occur around thevegetation-desert marginal area,where the dynamical and thermodynamical properties of PBL(Planetary Boundary Layer) are uncontinuous.It is stronger at daytime,weaker and reverse atnighttime.In the simulation,the moisture inversion phenomena are analyzed.Finally.theinfluences of vegetation cover factor exchange on local boundary layer climate are simulated.Thesimulating results bring to light that water may be conserved and improved by developing treeplanting and afforestation,and improving cover factor of vegetation in local ecoenvironment,andthis is an important way of transforming local climate in arid and semi-arid area.Results indicatethat the coupled model can be used to study the soil-vegetation-atmosphere interaction and localboundary layer climate.  相似文献   

17.
Summary The dynamical effect of land surface heterogeneity on heat fluxes in the atmospheric boundary layer (ABL) is investigated using numerical simulations with a non-hydrostatic model over a wide range of grid resolutions. It is commonly assumed that mesoscale or dynamical fluxes associated with mesoscale and convective circulations simulated by a high-resolution model (subgrid (SG) model) on the subgrid scale of a climate model (large-scale (LS) model) represent additional processes in the ABL, which are not considered by the turbulence scheme of the LS-model, and which can be parameterized using the SG-model. The present study investigates the usefulness of this methodology for small-scale and large-scale idealized heterogeneities using a SG-model resolving mesoscale or even microscale circulations to compute the mesoscale fluxes on the scale of the LS-model. It is shown that the dynamical transports as derived from the SG-model should not be used to correct the parameterized turbulent fluxes of the LS-model. The reason is that the subgrid circulations simulated by the SG-model interact with the fields of wind and scalars in the ABL, which results in reduced turbulent fluxes in the ABL. Thus the methodology of previous studies to use mesoscale/dynamical fluxes for the correction of flux profiles simulated by climate models seems to be questionable.  相似文献   

18.
The atmospheric boundary-layer (ABL) depth was observed by airborne lidar and balloon soundings during the Southern Great Plains 1997 field study (SGP97). This paper is Part I of a two-part case study examining the relationship of surface heterogeneity to observed ABL structure. Part I focuses on observations. During two days (12–13 July 1997) following rain, midday convective ABL depth varied by as much as 1.5 km across 400 km, even with moderate winds. Variability in ABL depth was driven primarily by the spatial variation in surface buoyancy flux as measured from short towers and aircraft within the SGP97 domain. Strong correlation was found between time-integrated buoyancy flux and airborne remotely sensed surface soil moisture for the two case-study days, but only a weak correlation was found between surface energy fluxes and vegetation greenness as measured by satellite. A simple prognostic one-dimensional ABL model was applied to test to what extent the soil moisture spatial heterogeneity explained the variation in north–south ABL depth across the SGP97 domain. The model was able to better predict mean ABL depth and variations on horizontal scales of approximately 100 km using observed soil moisture instead of constant soil moisture. Subsidence, advection, convergence/divergence and spatial variability of temperature inversion strength also contributed to ABL depth variations. In Part II, assimilation of high-resolution soil moisture into a three-dimensional mesoscale model (MM5) is discussed and shown to improve predictions of ABL structure. These results have implications for ABL models and the influence of soil moisture on mesoscale meteorology  相似文献   

19.
20.
荒漠绿洲边界层结构的数值模拟   总被引:11,自引:1,他引:11       下载免费PDF全文
陆-气相互作用和中小尺度天气系统的研究中,水平不均匀边界层和水平不均匀地表的强迫作用都是重要的物理过程.本文用已建立的陆面过程与大气边界层耦合模式(BLCM),较详细地研究了草地周围为荒漠(半沙漠)的地表植被不均匀而造成的边界层结构特征和局地环流及其昼夜变化.通过边界层顶影响自由大气不同尺度的运动.模式结果揭示出最强的上升和下沉运动是发生在荒漠-草地间动力和热力不连续的界面附近,且呈现出不对称性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号