首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
为了更好地揭示南宁市雷电灾害分布特点和发生规律,科学有效指导防雷减灾工作,基于南宁市2006-2019年二维雷电监测定位资料和1998-2019年雷电灾害汇编资料,分析研究了雷电灾害时空分布特征及与雷暴活动的关系。结果表明,南宁市雷电灾害逐月分布特征呈单峰型,5-9月是雷电灾害多发期,10月至次翌年2月是雷电灾害低发期;1998-2019年南宁市发生286起雷电灾害中城市占比略高于农村,农村雷灾以人员伤亡为主,城市则以经济损失为主;5-9月是南宁市闪电活动高发期,6月云地闪最多,11月至翌年2月闪电较少发生;雷电灾害事故数与雷暴活跃度成正相关。  相似文献   

2.
利用湖北省地面雷暴日资料和闪电定位监测资料,采取数理统计方法,对武汉至广州高速铁路湖北段沿线雷电活动进行分析。结果表明:其沿线一年四季均有雷暴发生,且处在湖北省闪电高密度区;夏季平均雷暴日最多,冬季平均雷暴日最少,4-8月闪电次数占全年闪电总次数的91.5%,为闪电集中发生期;一天中闪电次数集中出现在15-19时,也是对流性雷电天气集中发生期和雷电防御关键时段;咸宁北站一带闪电密度最大,雷电活动较频繁,是雷电防御重点地段。  相似文献   

3.
利用勃利县气象观测月报表资料,统计1994-2013年勃利县雷暴发生次数,结合雷达回波及闪电定位系统分析雷暴气候特点:勃利县雷暴地域性明显;雷暴日分布为双峰型,月分布为单峰型;年雷暴日数虽平均为21.5次/年,但雷暴发生日持续时间长,雷电流强度大。  相似文献   

4.
通过肇庆市2013—2017年闪电定位系统数据,分析了肇庆市雷电活动的日变化、月变化、闪电强度和密度等雷电活动特征,结果表明:肇庆市雷暴特征明显,日变化呈单峰状,主要集中在14:00—19:00;月变化呈双峰型分布,峰值分别为5和7月。雷电密度分布呈现两极分布,东南部雷电密度较大,西北山区密度较小;雷电流分布则刚好相反,西北山区雷电流较大,东南部相对偏小。雷电流峰值达到510.8 kA,平均电流达24.59 kA。  相似文献   

5.
为了不断提高雷电预报预警业务水平,对陕西2007—08—08-09大暴雨强雷电天气过程,分别分析闪电定位仪资料、环流背景、环境场的不稳定度、FY-2C卫星云图特征等,结果表明:生命史为10h的中尺度对流系统(MCS)导致大暴雨和强雷电的产生;MCS发生发展期,是产生高密度大强度雷暴的主要时段;雷灾事故发生在雷电高密度区、雷电高频次时期。地面冷锋是强雷暴天气的触发机制。提出雷电预警的着眼点。  相似文献   

6.
杭州市雷电活动特征及雷电灾害区划   总被引:2,自引:0,他引:2  
利用杭州市1966-2005年雷暴日资料和2008-2009年闪电定位资料,运用ArcGIS空间分析技术结合数理统计方法,分析杭州市雷电活动时空分布特征,并采用地闪密度空间分布与最大地闪强度空间分布的叠置作为雷电风险的主要评价指标,得到杭州市雷电灾害致灾危险性区划.分析结果表明,在时间分布上,杭州市雷暴天气多发生在夏季...  相似文献   

7.
江苏省雷电分布特征分析   总被引:30,自引:13,他引:17  
冯民学  焦雪  韦海容  殷娴  吴震 《气象科学》2009,29(2):246-251
根据江苏省46a来13个地面观测站的雷暴日资料、4a的电力部门闪电定位资料以及2a的气象部门闪电定位资料,分析研究了江苏省雷电活动的时空分布特点.结果表明,江苏省雷电总的地域分布趋势是,南部比北部多,西部比东部多;丘陵低山地区多于大片的平原地区,陆上大的水体附近也是多雷区,而且江苏省的雷电多发区与经济发达区大体重叠.这些地域应是防雷的重点地区.江苏省的雷暴发生时间主要集中在3-9月,全省雷电多发时段在16-17时,但地域间因地形地貌及雷暴源地的不同,各地日平均逐时分布的差异明显.  相似文献   

8.
利用2019-2020年风云四号气象卫星A星(FY-4A)多通道扫描成像辐射计(AGRI)提供的云顶数据和地基全球闪电定位网(WWLLN)提供的闪电数据,结合MICAPS气象观测站和海洋浮标记录的极大风数据,研究南海区域(5°~30°N,105°~125°E)71次雷暴大风过程的时空分布及其闪电和对流活动特征。结果表明:观测站记录的雷暴大风主要分布在南海北部;雷暴大风主要发生在5-9月,峰值出现在8月,3月发生次数最少;雷暴大风主要发生在07:00-12:00(北京时,下同),10:00频次最高,午后频次减少。雷暴大风闪电密度的极大值分布在广东南部近海区域,且闪电集中发生在距离观测站40~80 km半径范围内;孤立雷暴大风过程首次闪电跃变的发生时刻相对大风峰值时刻超前30 min至2 min。在对流特征方面,在雷暴大风风速峰值时刻,观测站处的云顶亮温为200~220 K,云顶高度为12.5~15 km。孤立雷暴大风云团云顶亮温最低值(即最强对流发生位置)与大风观测站点的距离平均为77.2 km,云顶亮温平均相差2.6 K。  相似文献   

9.
利用粤港澳闪电定位系统资料,采用线路走廊网格法,分析2016—2021年广珠城轨沿线雷电活动特征。结果表明:沿线每年除12月外,1—11月均有雷暴活动,其中5和8月最为集中;每天12:00—17:00为闪电次数高发期,这也是对流性雷电天气集中发生期和雷电防御关键时段。采用数理统计法和数据库技术,结合ArcGIS工具,制作地闪回击频次空间分布图和雷电流幅值空间分布图,全线应重点对雷电流幅值小于60 kA闪电进行防范;雷击易损段依次为广州南站-顺德站-容桂站-古镇站。  相似文献   

10.
对2009年北京地区6-8月雷电分布特征分析结果表明:6-8月是北京地区雷电的高发时段,共有雷暴天数60天,其中集中发生在7月下旬和8月上旬,这与北京地区“七下八上”的汛雨分布特征一致;北京地区发生雷电时基本上是持续出现数天,最多持续7天,而不发生雷电时,连续无雷电日出现的次数较多.  相似文献   

11.
利用湖北省2013—2018年6—8月ADTD闪电探测数据对该地区的闪电活动进行特征分析后发现, 地闪密度和日变化特征与地形密切相关, 其中, 闪电密度高值区出现在海拔500~1 500 m的中尺度山脉向平原的过渡地带以及山脉之间的平原(河谷)地区; 山区的地闪集中在午后至傍晚时段, 具有明显的单峰特征, 平原的地闪日变化相对平缓, 虽然主峰值同样出现在午后, 但夜间地闪活动依然活跃。基于2015—2016年6—8月逐6 min雷达组合反射率拼图产品和地闪资料挑选了94例伴有显著闪电活动的雷暴系统个例, 经统计分析后发现, 雷暴系统的初次地闪、峰值地闪和末次地闪均集中出现在13:00—18:00, 其中, 山区雷暴的地闪持续时间较短, 地闪频数峰值较小; 平原雷暴的地闪持续时间更长, 地闪频数峰值也更大; 山麓雷暴的特征则介于两者之间。利用ERA-Interim再分析资料进行成因分析后可知, 地形强迫和局地热力不稳定是影响湖北山区夏季闪电密度分布和日变化特征的关键因子。   相似文献   

12.
利用塔克拉玛干沙漠腹地的塔中气象站1996-2010年地面观测资料对该地区的雷暴和闪电特征进行了分析。结果表明:塔中地区年平均雷暴日数为9.3d,年平均闪电日数为2.7d。塔中地区4月开始出现雷暴和闪电,7月达到最高值,10月至翌年3月之间无雷暴和闪电发生,塔中地区雷暴平均初日为6月1日,平均终日为8月5日。塔中地区雷暴多出现在午后至凌晨,并以30min以内的短时雷暴为主,雷暴出现的最多方位是W和N。  相似文献   

13.
北京地区的闪电时空分布特征及不同强度雷暴的贡献   总被引:2,自引:2,他引:0  
利用北京闪电定位网(BLNET,Beijing Lightning Network)和SAFIR3000(Surveillance et Alerte Foudre par Interometrie Radioelectrique)定位网7年共423次雷暴的闪电资料,并按照雷暴产生闪电多少,同时参考雷达回波和雷暴持续时间,将雷暴划分为弱雷暴(≤1000次)、强雷暴(>1000次且≤10000次)和超强雷暴(>10000次),分析了北京地区的闪电时空分布特征及不同强度等级雷暴对闪电分布的贡献。北京总闪电密度最大值约为15.4 flashes km-2a(^-1),平均值约为1.9 flashes km^-2a(^-1),大于8 flashes km^-2a(^-1)的闪电密度高值区基本分布在海拔高度200 m等高线以下的平原地带。不同强度雷暴对总雷暴闪电总量贡献不同,弱雷暴(超强雷暴)次数多(少),产生的闪电少(多),超强雷暴和强雷暴产生的闪电分别占总雷暴闪电的37%和56%。不同强度雷暴对总雷暴的闪电密度高值中心分布和闪电日变化特征影响显著,昌平区东部、顺义区中东部和北京主城区是总雷暴闪电密度大于12 flashes km-2a(-1)的三个主要高值区中心,前两个高值中心受强雷暴影响大,而主城区高值中心主要受超强雷暴影响。总雷暴晚上频繁的闪电活动主要受超强雷暴和强雷暴影响,这两类雷暴晚上闪电活动活跃,分别占各自总闪电的69%和65%,而弱雷暴闪电活动白天陡增很快,对总雷暴午后的闪电活动影响大。另外,不同下垫面条件闪电日变化差异大,山区最强的闪电活动出现在白天,午后闪电活动增强很快,主峰值出现在北京时间18:00,而平原最强的闪电活动发生在晚上,平原(山麓)的主峰值比山区推迟了约1.5小时(1小时)。  相似文献   

14.
2009—2012年中国闪电分布特征分析   总被引:6,自引:0,他引:6  
王娟  谌芸 《气象》2015,41(2):160-170
运用全国雷电监测定位系统ADTD获取的2009年1月至2012年12月云地闪电资料,对我国闪电的时空分布特征进行统计分析。结果表明:地闪中负地闪占闪电总数的94%以上,正地闪占5%左右,我国闪电主要发生在5 9月,7、8月是闪电高发期,同雨带的推进有较好的对应关系。随着季风的推进,闪电从南向北,从东向西逐渐增多。闪电在夏季达最大,春秋季次之,冬季最小;闪电频次日变化主要呈单峰分布,全国闪电多发时段在16 17时,同强对流天气多发时段相对应。闪电总体分布南部比北部多,东部沿海比西部内陆多;闪电密度分布呈明显的地域性差异,其中华南地区、中东部地区以及四川盆地为我国闪电密度高值区;闪电白天主要发生在江浙以及广东沿海一带,夜间则主要发生在云贵、川渝内陆地区。午后至傍晚(14—20时)闪电最活跃,上午(08—14时)最不活跃。三个闪电高发区的闪电峰值所在月份不同,华南地区主要在6月,四川盆地主要在7月,而中东部地区则在8月出现最大值。春季闪电最活跃的区域是华南,这和该区域的前汛期降水密切相关。正负闪电强度主要集中在10~40kA,累计概率在60%以上的正、负地闪电强度分别小于60 kA和35 kA;累计概率在90%以上的正、负地闪强度分别小于140 kA和65 kA,闪电强度的低值区主要分布负闪,而正闪主要分布在闪电强度的大值区。  相似文献   

15.
用TRMM/LIS资料分析长江三角洲地区的闪电活动   总被引:10,自引:2,他引:10       下载免费PDF全文
统计分析了1998~2004年长江三角洲(长三角)地区由星载闪电成像传感器(LIS)观测的闪电资料,发现了该地区LIS闪电活动的一些时空分布特征:闪电次数的年差异较大,最多年份是最少年份的3倍;7~8月盛夏季节是闪电高发期,闪电次数和日数分别占全年的70%和60%;闪电高发期间的抬升指数(IL)小于-2℃;7~8月闪电主要集中于午后,3~6月则集中在上半夜;上海地区单日LIS闪电次数超过8次时,多伴有强对流天气和短时强降水;长三角地区的闪电活动区主要分布在上海的东部,部分沿江、沿湖地区和浙江的龙门山等山区;水域闪电少于陆地,大城市城区下风方向闪电活动较多,部分雷暴刚入海时有加强的趋势。分析表明:太阳辐射的季节变化和日变化等是造成闪电时间分布的主要原因;地形的动力作用和下垫面的物理特性及其差异是造成气候意义上中小尺度闪电空间分布差异的主要原因。文章对LIS闪电定位资料进行了探测效率订正,根据LIS注视时间计算了闪电密度,并与地基闪电定位资料和多普勒天气雷达资料进行了对比。LIS闪电活动特征的分析,对雷暴预警和防灾减灾有指导意义。  相似文献   

16.
利用2010—2018年全球闪电定位网(WWLLN)观测资料, 采用基于闪电密度的空间聚类算法(DBSCAN)建立了西北太平洋地区雷暴数据集, 研究了该区域雷暴的时空分布特征, 并进行海陆差异对比。研究结果表明, 在合理设定DBSCAN参数阈值的条件下, 基于WWLLN闪电聚类的雷暴与天气雷达观测在时空分布和过程演变上具有一致性。西北太平洋区域的日均雷暴数为3 869, 雷暴的闪电密集区平均面积为557.91km2, 平均延展尺度为31.99 km, 平均闪电频次为33 str/(h·thu)。在空间分布上, 东南亚沿海地区与热带岛屿的雷暴活动最强, 南海的雷暴活动强于深海。距离海岸线越近的海域其雷暴面积越大。在季节分布上, 整个区域雷暴活动在夏季(6—8月)达到全年最强, 南海雷暴活动6月达到峰值, 而日本东部近海海域的雷暴活动则在冬季达到最强。我国内陆南方地区雷暴3月开始显著增多, 雷暴平均面积达到最大, 但雷暴平均闪电频次5月才达到峰值。在日变化方面, 陆地雷暴活动呈现典型的单峰型特征, 大部分雷暴发生在午后及傍晚。海洋雷暴日变化则较为平缓, 南海具有其独特的雷暴日变化特征。   相似文献   

17.
A 6-year analysis (including data of 36 million strokes) of the spatial and temporal occurrence of lightning strokes in Germany and neighbouring areas is presented. The analysis on a high-resolution grid with spatial resolution of 1 km allows assessing the local risk of lightning and studying local effects, e.g. the influence of orography on the occurrence of thunderstorms. The analysis reveals spatial and temporal patterns: the highest number of lightning strokes occurs in the pre-alpine region of southern Germany, further local maxima exists in low mountain ranges. The lowest number of lightning strokes is present in areas of the North Sea and Baltic Sea. Despite a high year-to-year variability of lightning rates, on average a clear annual cycle (maximum June to August) and diurnal cycle (maximum in the afternoon) are present. In addition to this well-known annual and diurnal pattern, the analysis shows that those are intertwined: the diurnal cycle has an annual cycle, visible in the time of daily maximum which occurs later in the afternoon in summer compared to spring and autumn. Furthermore, the annual cycle of lightning is varying geographically, e.g. offshore and coastal regions show a lower amplitude of the annual cycle and a later maximum (autumn) compared to inland (mountainous) regions. In addition, the annual and diurnal cycles of lightning attributes are analysed. The analysis reveals rising height of inner-cloud lightning during the year with a maximum in late summer.  相似文献   

18.
选取了青藏高原东北侧临夏站1980—2010年的雷暴观测资料和陇中地区闪电定位仪2006—2010年的闪电观测资料,利用统计学手段对该地区雷电的年际变化、年变化、日变化、首次发生雷暴方向、地闪密度等进行了分析.基本揭示了该地区雷电的发生特征,发现一年中雷电主要发生在夏季,一天中雷电主要发生在下午及傍晚,地闪密度高于中国平均密度.对该地区雷电灾害防灾减灾工作有一定的促进意义.  相似文献   

19.
利用杭州市1966—2005年雷暴日资料和2008—2009年闪电定位资料,运用ArcGIS空间分析技术结合数理统计方法,分析杭州市雷电活动时空分布特征,并采用地闪密度空间分布与最大地闪强度空间分布的叠置作为雷电风险的主要评价指标,得到杭州市雷电灾害致灾危险性区划。分析结果表明,在时间分布上,杭州市雷暴天气多发生在夏季和午后时段;在空间分布上,杭州市地闪密度较大地区多集中在山脉向阳坡、迎风坡以及大面积水域向陆地过渡的区域。杭州市雷电灾害风险高值区主要集中在上城区、江干区、滨江区、西湖区西部以及淳安县西南部、富阳市大部、余杭区西部、萧山区中部地区。雷电风险高值区主要集中在人口稠密区、工业集聚区、湖边、江边等,这些都可能与气温、空气湿度、地形地貌、建筑物密集密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号