首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于青藏高原冷湖地区的气象观测资料,开展了气象要素变化及对天文观测的影响研究,从气温—降水、云量—日照时数、大风—沙尘三个方面分析了在冷湖地区进行天文观测的可能性与合理性。结果表明:冷湖地区年平均气温低,最高和最低气温差值存在年代际转折特征,转折后气温差值降低(最低气温增加趋势超过最高气温),降水量较少,夏季降水减少而其他季节降水增加,低温少雨的环境有利于大气层结稳定,提升天文观测数据质量;日照时数在年代际转折以后增加,云量减少,低云量有助于电磁波的传播,提升天文观测精度;风速和大风日数在转折以后均为减弱趋势,这使得浮尘日数也减少,这有助于减少天文观测仪器的磨损,增加天文观测仪器的使用寿命。  相似文献   

2.
天文台选址前期必须考虑气象条件的影响。根据1961—2018青海省柴达木盆地冷湖、茫崖和大柴旦3个气象观测站的月数据进行气象条件特征分析,得到冷湖地区云量、气温、风速、水汽压、相对湿度等天文相关气象要素的年、月际变化特征。结果表明:冷湖地区水汽压年平均不超过3 hPa,相对湿度为32%,多年平均风速<4 m/s,平均气温常年偏低且较为稳定。相对湿度、风速、大风日数、浮尘日数以及扬沙日数呈减少趋势,且大风、浮尘日数的减少速度较快。冷湖地区大气整层可降水量也明显低于其他地区,1991—2015年平均大气整层可降水量为0.29 mm,柴达木盆地冷湖地区云量较少、平均风速小、气候较为干燥,与其他天文观测台址的气象条件相比,柴达木盆地冷湖地区有明显优于其他天文观测台址的气象条件,适宜开展天文观测研究。  相似文献   

3.
近45年哈密地区温度变化特征   总被引:7,自引:0,他引:7  
利用1961-2005年近45年哈密地区6个站点的观测资料,分析了该地区的平均气温、平均最高气温、平均最低气温和平均日较差、炎热日以及寒冷日的年际、年代际的变化特征,同时对降水、云量等要素也进行了分析,揭示其与哈密地区温度变化的可能关系。结果表明,近45年来哈密地区气候显著增暖,平均气温在夏季增暖幅度最大,春季最弱。1990年代以后增暖趋势表现最明显,21世纪以来增幅最大。与平均气温变化趋势相一致,最高温度和最低温度也呈显著升高趋势,其中最低温度的升高幅度远大于最高温度和平均气温的升高幅度。哈密地区近45年平均日较差显著减小,这主要是因为最低气温的升高幅度大于最高气温的升高幅度。在全球增暖背景下,哈密地区的炎热日数显著增加,而寒冷日数显著减少。个别站的气温增温不明显,这与局地的降水、云量增加,日照减少有一定关系。此外,哈密地区冬季平均气温在1980年代中后期有一次明显的突变,突变时间晚于新疆其他地区5~6年左右,表明气候突变在不同地区会有不同的表现。  相似文献   

4.
利用1961~2003年共和盆地(共和、贵南两站平均值)观测的年季气温、降水等资料,用气候诊断方法分析了该地区气候年代际变化特征以及荒漠化扩大的成因。结果表明共和盆地40a来年平均气温增温比较明显,上世纪90年代四季平均气温、平均最高和平均最低气温较90年代偏高0.8~2.6℃,年、夏、秋季降水量呈减少趋势,冬、春季降水呈增加趋势。年大风日数80~90年代较60~70年代大风、沙尘暴日数多。80年代温度升高、降水减少、大风日数增多的干暖化气候背景是荒漠化扩展的主要原因之一;90年代以来,干暖化的趋势继续加剧,并逐步扩展到冬、春季,使得该地区的草地资源明显退化,加剧了生态环境的进一步恶化。  相似文献   

5.
长江源头地区冰川变化的气候成因研究   总被引:1,自引:0,他引:1  
利用1959—2003年长江源头沱沱河代表站观测的年、季气温、降水、积雪资料,用气候诊断方法分析了该地区气候年代际变化特征以及冰川变化的成因。结果表明:长江源头地区40多年来夏季增温比较明显,上世纪90年代四季平均气温、平均最高和平均最低气温较80(或60)年代偏高0.6—1.2℃。降水量(含积雪量)冬季增加,夏季减少,秋、春季降水增加而积雪量减少。年大风日数80~90年代较60~70年代偏多。80年代夏季温度升高、降水减少、大风日数增多的暖干气候背景是该地区冰川退缩的主要原因;90年代以来,夏季暖干化的趋势继续加剧,并逐步扩展到春、秋季节,使得该地区的冰川迅速退缩,生态环境进一步恶化。  相似文献   

6.
利用石家庄地区5个观测站1961-2010年逐日地面温度、气温、风速、日照时数和总云量观测数据,分析讨论了该地区地面温度最高值和最低值的变化特征以及气温、降水、风速、日照时数和总云量对地面温度变化的影响.结果表明:地面最高温度波动幅度较大,其中冬季波动幅度明显偏大;地面最低温度波动幅度较小,其中夏季波动幅度明显偏大;地面最高温度夏、秋季降温趋势显著;地面最低温度各季节增温趋势显著;地面最高温度与最高气温、日照时数和风速互为正相关,与总云量互为负相关;地面最低温度与最低气温和总云量互为正相关,与风速、日照时数互为负相关;最高气温对地面最高温度的正相关性最强,风速最弱;总云量对地面最高温度的负相关性在夏、冬季较强;最低气温对地面最低温度的正相关性最强,总云量最弱;风速对地面最低温度的负相关性在春、秋季较强,日照时数在秋、冬季较强.  相似文献   

7.
额济纳旗近47年气候变化特征分析   总被引:3,自引:1,他引:2  
利用额济纳旗地面气象站1960--2006年降水、气温、蒸发量、风速、大风日数和日照时数资料,分析了该地区气候变化趋势及其年代际变化特征。结果表明,近47年来,额济纳旗气温呈上升趋势,降水趋势无明显变化,蒸发量、风速和大风日数呈明显减少趋势,日照时数呈不明显减少趋势;以80年代中期为界分为冷、暖2个时期,80年代中期之前为冷期,之后为暖期;60~70年代冷湿期,80年代气候以干燥为主,前半期干冷,后半期干热;90年代波动较大,但总体降水增加,温度增高,为湿热期;2000年以来持续干热,暖干化趋势明显。  相似文献   

8.
重庆市气温变化趋势及其可能原因分析   总被引:3,自引:1,他引:2  
通过对重庆市1924~2007年的平均气温、平均最高气温、平均最低气温、极端最高气温、极端最低气温随时间变化特征进行分析发现:近84年来重庆市平均气温微弱变冷,与全国平均温度相比线性变化趋势存在一定差异;平均最高和平均最低气温、极端最高和极端最低气温的非对称性变化显著,最高气温的下降对平均气温的影响很大,平均最低气温除春季外增暖都非常显著,最低温度的增高对气温日较差减小的影响更明显.夏季副热带高压位置偏南,使得我国西南地区东部夏季降水天气增多、云量增加、日照时数减少,加之轻雾日数增多,可能是重庆市夏季最高温度持续下降的主要原因.冬季最低气温的显著升高主要是由于降水天气减少、云量增加和城市热岛效应所致.  相似文献   

9.
张璐  李红梅  温婷婷 《气象科技》2023,51(4):489-498
选取1961—2020年青海高原50个地面气象观测站逐月气温(平均、最高、最低)、降水和风速资料,利用气候变化趋势转折判别模型(Piecewise Linear Fitting Model,PLFIM)、气候倾向率等方法,分析青海高原气候变化的时空分布和年代际趋势转折变化等特征。结果表明:〖JP2〗①近60年来青海高原年平均气温呈显著上升趋势,其中平均最低气温的升温速率尤为明显,为0.62 ℃〖DK〗·(10a)-1;年降水量呈波动上升趋势,进入21世纪后呈显著增加趋势,速率为39.9 mm〖DK〗·(10a)-1;年平均风速整体呈减小趋势,其中以茫崖站最为明显,风速减小速率为-0.56 m〖DK〗·s-1〖DK〗·(10a)-1。〖JP〗②年平均气温和平均最高气温在1972年和1983年发生了年代际趋势转折,平均最高气温第3次转折发生在2009年,平均最低气温没有发生明显的年代际趋势转折。年降水在1972年、1983年和2000年发生年代际趋势转折;年平均风速发生在1998年和2009年。③与旧气候态(1961—1990年)相比,新气候态下(1991—2020年)青海高原年平均气温、平均最高气温和平均最低气温的均值分别上升了1.16 ℃、1.22 ℃和1.81 ℃,向高温方向漂移,且概率密度分布形状更加偏平,气候趋于不稳定;④在全球变暖背景下,青海高原年平均气温和年降水量均呈增加趋势,其中年平均气温的增温速率远超中国、同纬度地区及全球平均水平;降水量年际波动较大,但整体呈增加趋势。  相似文献   

10.
近50a开封市气候变化特征分析   总被引:4,自引:0,他引:4  
利用开封市气象观测站1957-2007年的观测资料,分析了近50 a气候变化的特征,结果表明:开封市年平均气温呈上升趋势,春季气温呈波浪式平缓上升,夏季气温略有下降,秋季气温缓慢上升,冬季气温上升明显;年平均降水量变化趋势不明显,年际波动大,夏季降水呈上升趋势,冬春降水变化不明显,秋季降水下降明显;历年大风日数呈V型上升趋势,夏季上升明显,秋冬两季略有下降;年平均大雾日数呈明显上升趋势;年平均日照时数呈下降趋势,2000年后日照时数下降明显.  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

17.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

18.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
20.
正Aims Scope Advances in Atmospheric Sciences(AAS)is an international journal on the dynamics,physics,and chemistry of the atmosphere and ocean with papers across the full range of the atmospheric sciences,co-published bimonthly by Science Press and Springer.The journal includes Articles,Note and Correspondence,and Letters.Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号