首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
冻土变化对寒区基础建设、水文、生态等都有重要影响,在全球变暖背景下,探究土壤冻融过程具有重要现实意义。本文基于中国自然地理特征和冻土特性,划分出中国西部地区(以下简称西部地区)作为研究区域,并利用1981年1月至2020年6月ERA-5地表温度、土壤体积水含量和逐月气温数据,分析了近40年中国西部地区土壤冻融状况、活动层厚度和最大冻结深度空间分布,探讨了冻融状态与气温、海拔的相关性。研究结果表明:西部地区冻融起始时间空间分布具有由高海拔地区至低海拔地区冻结推迟、融化提前的特征。高海拔的藏北高原冻结最早,融化最晚,冻结持续时间最久昆仑山脉上零星区域冻结最长可持续300天以上。海拔低且土壤含水量低的西部西北塔里木盆地,冻结最晚,融化最早,融化持续时间最长,塔克拉玛干沙漠区域融化可维持在280天以上。多年冻土活动层厚度基本都超过2.0 m,只有喀喇昆仑山脉附近的区域才有较大范围活动层厚度低于2 m的区域,青藏高原的季节性冻土冻结深度最大,厚度可以达到2 m以上,塔里木盆地冻结深度最浅,厚度在0.6 m以内。1981-2020年间,西部地区冻结起始日推迟,融化起始日提前,开始冻结和完全冻结起始...  相似文献   

2.
使用青藏高原中部野外22个站点2010-2014年观测数据结合GLDAS-NOAH陆面模式1960-2014年3 h 0.25°×0.25°格网数据,通过线性拟合等方法分析了高原中部的冻结强度变化并探讨了其与气温的关系。选取典型站点资料,结合GLDAS-NOAH数据对四次冻融过程进行分析比较,结果表明:(1)冻结强年和冻结弱年,高原中部季节冻土区各站点冻结、消融过程的持续时间差异大。(2)1960-2014年,高原中部平均气温呈上升趋势,其速率为0.39℃·(10a)-1;冻结起始日以0.91 d·(10a)-1的速率延后,冻结结束日则以2.88 d·(10a)-1的速率提前,冻结结束日对气温变暖的响应更迅速。(3)垂直方向上,不同冻结强度年表层5 cm处土壤温度、湿度差异最大,差值随土壤深度的增加逐渐减小。冻结强、弱年土壤水分相变速率不同引起的热量差使得各层土壤温度的日变化产生明显差异。  相似文献   

3.
藏北高原土壤温、湿度变化在高原干湿季转换中的作用   总被引:15,自引:2,他引:15  
王澄海  尚大成 《高原气象》2007,26(4):677-685
通过1997年和1999年藏北高原沱沱河观测站土壤温、湿度变化和对应降水变化的分析,表明与高原冻融过程相联系的土壤湿度变化和高原干湿季转换及湿季降水存在联系。土壤融冻引起土壤增湿的时间比高原雨季降水开始的时间约早20天,春季高原土壤温、湿度的增加在高原地表感潜热的变化中有重要贡献。春末夏初高原土壤冻融过程引起的土壤湿度变化,在高原局地尺度的水分循环中为高原湿季开始提供了有利的水汽条件。因此,在青藏高原陆气相互作用过程中,与冻融过程相联系的土壤湿度变化在高原季节转换中是一个不可忽视的因子。  相似文献   

4.
青藏高原1977—2006年土壤热状况研究   总被引:1,自引:0,他引:1       下载免费PDF全文
浅层土壤温度的变化可以指示活动层厚度变化。利用青藏高原及毗邻地区74个站1977—2006年近30年的土壤温度资料,研究了青藏高原及毗邻地区土壤热状况。结果表明,自1977年的近30年来,5 cm土壤负积温绝对值有减小的趋势,在高原的不同区域减小的幅度不同,对整个研究区域而言,负积温绝对值每10年降低了35℃;近30年来研究区内土壤的最大冻结深度呈现减薄的趋势;冻结期间(冷季)高原腹地负积温变化幅度要比边缘地区大,而在一个完整的冻融循环过程中,高原腹地相对于边缘地区稳定;近30年来高原地区冻融强度(FTI)呈现增大的趋势,这在某种程度上表明高原多年冻土区冻土的稳定性发生了变化;纬度及海拔对FTI值的影响较大,当海拔低于4000 m时,33°N南北两区域FTI值随海拔升高的减小率不同,南部减小的量是北部的2.5倍,海拔高于4000 m时,FTI值受纬度影响相对减弱。  相似文献   

5.
建瓯市48a四季长短及极端气温变化特征   总被引:1,自引:0,他引:1  
在全球气候变暖的背景下,近些年建瓯气温明显升高,使得建瓯四季的起止时间和长度发生了明显的改变.通过对1961-2008年建瓯温度资料分析发现:建瓯夏季起始日提早,冬季起始日推迟,春、秋季起始日相对稳定;夏季持续时间延长,春、冬季时间缩短,秋季持续时间稳定.日极端最低气温的增温幅度明显高于日极端最高气温的增温幅度,且日极端最低气温<3.0 ℃的天数(即霜日)明显减少、日最高气温>35 ℃的天数(即高温日数)变化不明显.  相似文献   

6.
高原地表过程中冻融过程在东亚夏季风中的作用   总被引:3,自引:0,他引:3  
用茶卡站冻结日数与季风指数的相关简单说明高原冻融过程与东亚夏季风之间存在联系。作为个例,对沱沱河区域1998,1999年从冬到夏过渡季节的冻融过程与感、潜热变化及东亚夏季风建立之间的关系进行了初步分析。结果表明:从冬到夏的过渡季节中,青藏高原的冻融过程与高原加热存在着联系,土壤季节性冻融使得高原地表向大气的感、潜热输送随季节发生变化,青藏高原的加热作用对东亚夏季风的爆发时间和强度有重要影响。因此,高原地表过程中土壤冻融过程在东亚夏季风的爆发过程中扮演着重要角色。  相似文献   

7.
基于1961-2020年三江源地区21个气象观测站点逐日冻土深度、平均气温和降水资料,利用数理统计方法分析了季节性冻土冻结初始日、融化终止日、最大冻结深度的时空分布特征及其与气温、降水的关系。结果表明:1961-2020年,三江源地区季节性冻土平均冻结初始日始于9月下旬至10月下旬,融化终止日多出现在4-5月。近60年来,三江源地区季节性冻土冻结初始日(融化终止日)显著推迟(提前),尤其是20世纪90年代以来,推迟(提前)尤为明显。三江源地区季节性冻土年最大冻结深度呈显著减小趋势,进入21世纪后,尤其是近10年来最大冻结深度减小明显。在空间分布上,冻结初始日、融化终止日、年最大冻结深度的分布主要受海拔的影响,冻结初始日(融化终止日)由高海拔向低海拔逐渐推迟(提前),年最大冻结深度也由高海拔向低海拔逐渐变浅。近60年来,三江源气候暖湿化导致季节性冻土封冻时间缩短、年最大冻结深度变浅。冻结初始日与10月气温、降水的正相关最高,融化终止日与气温和降水的负相关性在4月达最大,年最大冻结深度与1月气温和上一年8月降水呈显著负相关性。  相似文献   

8.
青海南部高寒草地土壤冻融交替期水热特征分析   总被引:2,自引:0,他引:2  
为进一步了解高寒草地土壤冻融交替过程及其对水热因子的响应机制,通过2014年8月1日至2015年8月1日不同土层土壤温度和水分观测资料的对比分析,较为系统地探讨了青南高寒草地土壤冻融期不同深度土层土壤温度和水分的变化特征。结果表明,青南高寒草地土壤冻融阶段大体可分为初冻期、稳定冻结中期、稳定冻结后期和消融期4个时期;不同土层土壤温度随气温的变化呈周期性波动,且随着土层的加深变幅减小;不同冻融期表层和亚表层土壤温度和水分波动幅度较大,下层土壤对水热因子的敏感性较小;土壤完全冻结的天数达44~115d,日冻融交替过程主要发生在表层和亚表层土壤。土壤冻融交替增强了土壤的保水性,对该区草地植被提前返青和初级生产力的提高具有促进作用。  相似文献   

9.
全球变暖情况下中国季节的变化   总被引:12,自引:0,他引:12  
利用中国1961-2008年752站逐日地面气温、气压、相对湿度和降水量资料,采用非线性相似度量方法对中国四季进行了划分,研究了近50年全球显著变暖情形下中国四季的时空演变特征。结果表明:(1)气候增暖背景下中国大部分地区冬季持续时间明显缩短,缩短幅度达到10天以上,尤其在20世纪80年代中后期发生转折后缩短趋势突然增强,平均为0.29 d·a-1;夏季持续时间自1961年以来增加了2.8天,秋季增加了4.7天,且80年代中后期都发生了一次转折变化,春季持续时间总体48年增加2.6天的变化相对较小,但在90年代后期发生转折变化后呈现明显的增加趋势;(2)与持续天数的变化相对应,中国春、夏季的起始时间呈现提前的趋势,而秋、冬季则呈现推后的趋势,尤其是80年代中后期以后变化更为明显;(3)不同季节的变化存在一定的差异,中国大部分地区冬季持续天数和起始时间变化最为明显,春、夏、秋三季相对较弱;同一季节不同区域的响应也不同,就全国而言,北方比南方的响应更明显,而以黑龙江为代表的东北地区、以新疆为代表的西北地区以及以海南为代表的华南等地变化最为明显。  相似文献   

10.
陈燕丽  丁美花  冯利平  莫伟华  匡昭敏 《气象》2016,42(12):1554-1559
利用2000—2011年广西5个农业气象试验站的甘蔗生育期及同期气象观测资料,分析了宿根蔗生长发育变化特征及不同生育期气象条件差异及对宿根蔗生长发育的影响。结果表明:(1)2000—2011年广西宿根蔗发株期呈波动推后趋势,延后约2.5 d·a~(-1)。发株—茎伸长、全生育期间隔天数均呈明显缩短趋势,分别约约为2.9、2.7 d·a~(-1)。发株—茎伸长期间隔天数年际波动较大,变幅约15 d(16%),但茎伸长—工艺成熟期间隔天数年际变化稳定,变幅仅为4 d(3%)。宿根蔗最大茎高呈逐年上升趋势,增幅为5.3 cm·a~(-1),单茎鲜重呈明显上升趋势,增幅为64.4 g·a~(-1)。(2)宿根蔗全生育期相对湿度呈逐年下降约o.38%·a~(-1);发株—茎伸长期间日照时数呈逐年下降约10 h·a~(-1)。各生育期最低气温、降水量年际变化较大,平均气温、相对湿度年际变化较小,其中发株—茎伸长期气象条件的年际变幅明显大于茎伸长-工艺成熟期和全生育期。(3)气温升高缩短了宿根蔗生育期,但最低气温、平均气温、最高气温与最大茎高和鲜重均无显著关系。降水量对宿根蔗的发株—茎伸长、全生育期调控作用非常显著,但其对宿根蔗茎伸长—工艺成熟期作用不明显。日照时数对宿根蔗各个生育期发育天数的延长或缩短作用不明显,但在发株—茎伸长期,由日照时数的减少形成的较湿润条件对宿根蔗生长更有利。  相似文献   

11.
张戈  赖欣  刘康 《高原气象》2023,(3):575-589
土壤冻融过程显著影响地表含水量和能量收支变化。利用玛曲2017年8月至2018年7月的土壤温度/湿度、涡动观测资料以及公用陆面模式(Community Land Model,CLM)最新版本CLM5.0的模拟资料,其中冻结过程阶段的辐射和能量通量使用模式模拟的数据,通过分析土壤冻融过程中土壤温湿度、地表能量平衡各分量的时间演变特征,探讨冻融过程中地表水热交换的特征。数据分析表明:(1)土壤冻融过程包括冻结过程、完全冻结、消融过程及完全消融四个阶段,各阶段中的土壤温度/湿度、辐射和能量通量存在明显的日变化,在冻结过程和消融过程阶段,土壤湿度随土壤温度变化显示出明显的日冻融循环。(2)冻融过程通过影响表层土壤水分影响地表辐射收支和能量分配。冻融过程中土壤中的水相变为冰,改变下垫面性质影响地表辐射收支。土壤中的液态水通过相变影响地表潜热通量,完全消融(冻结)阶段,地气之间能量交换以潜热(感热)通量为主。相比于以潜热通量为主的冻结过程阶段,消融过程阶段净辐射通量逐渐增大,地气之间能量交换主要受感热通量影响。土壤中水分的昼融夜冻导致频繁的潜热通量释放影响地表热通量。土壤热通量在冻结过程(G  相似文献   

12.
气候变化改变了作物的生育环境,冬季积温的增加使冬小麦的适播期发生了变化,春季霜冻、干热风,使小麦的生理机能受到了损害。因此,给出气候变化背景下冬小麦最佳播期的窗口尤为重要。本文利用日照地区3个气象站1951—2016年的逐日气象数据,采用趋势分析、相关性检验等方法,对该地区冬小麦适播期(冬前≥0℃·d有效积温为400—750℃·d)、拔节期间发生的春季霜冻以及乳熟期间发生的高温干热风天气的时间变化进行了分析。结果表明:冬前(10月2日至12月20日)≥0℃·d有效积温,近62 a来大东港区以1.572(℃·d)·a~(-1)的速度递增,近58 a来五莲县以1.339(℃·d)·a~(-1)的速度递增,近66 a来莒县以1.513(℃·d)·a~(-1)的速度递增,日照地区冬小麦的适播期均未发生突变过程。最终确定日照地区冬小麦适播期大东港为10月20—25日,五莲县为10月17—20日,莒县为10月11—15日,比传统播期推迟5—10 d,理论上避免了冬小麦拔节期的霜冻危害,并分别以69%、85%、75%减少了小麦乳熟期的高温、干热风危害。该研究对当地冬小麦生产可起到积极的指导作用。  相似文献   

13.
为揭示广元极端降水的变化趋势,利用1961~2015年逐时和逐日降水数据分析广元降水特征和极端降水事件变化。结果表明,广元降水总量年际变化不明显,小时降水越来越极端;在02~06时,小时降水量呈增加趋势,苍溪和青川降水年际倾向率日变化为单峰单谷型,旺苍、广元和剑阁为双峰单谷型。广元市大部分地区短时强降水次数逐年增加,在1980s和2000年后有明显增加,特别是1980s的旺苍站,增幅达到71%;广元小时及日降水最大值有增加趋势。1961~2015年,日降水量≥25mm天数(R25mm)、日降水强度(SDⅡ)和极端降水量(R95)的年际倾向率分别为0.0558d·a~(-1)、0.0168mm·d~(-1)·a~(-1)和0.5998mm·a~(-1),而持续降水日数(CWD)则以-0.0202d·a~(-1)的速率减少,广元每年降水的持续天数在减少,但降水情况越来越极端。  相似文献   

14.
利用近50年新疆天山南北坡乌拉斯台河和乌鲁木齐河流域不同气象站点气温资料,对比分析了天山南北坡的气温变化趋势、入春与入夏时间、气温年极值、气温年较差及冬季逆温层变化特征。结果表明:天山南北坡显著升温时间约为1997年,北坡的乌鲁木齐气温增加趋势最大,为0.402℃·(10a)-1;南坡的库尔勒比乌鲁木齐入春、入夏早,乌鲁木齐主要入春、入夏时间分别为4月和6月,而库尔勒分别为3月和5月;北坡比南坡入春连续5天平均气温约高1℃,而两者入夏连续5天的平均气温接近;天山南北坡年最高气温的最大值、最小值和年平均最高气温随海拔的升高逐渐降低,而年最低气温的变化南北坡表现不一致,并且南北坡各站点的气温年较差随着高度的增加而减少;1月北坡逆温层的厚度大于南坡,北坡逆温层小渠子和蔡家湖的气温差变化趋势为-0.208℃·(10a)-1,南坡逆温层巴伦台和和静的气温差变化趋势为0.236℃·(10a)-1。  相似文献   

15.
欧亚大陆夏季地表气温在近四十年有显著的升温趋势,本文基于ERA5再分析数据研究了1979~2019年间欧亚大陆不同区域的夏季地表气温的变化特征,并利用气候反馈响应分析方法揭示了各区域变暖原因的异同。作为全球海拔最高的大地形,青藏高原在过去四十年经历了显著的增温过程。青藏高原周边相对低海拔的地区(如北非—南欧地区、蒙古地区、东北亚地区)同样表现出明显的变暖特征,而高原南侧的南亚地区的地表气温却变化不明显。青藏高原夏季积雪融化引起的地表反照率减小使得更多短波辐射到达地表,放大高原地表增暖。北非—南欧地区增暖则主要源于大气气溶胶含量减少造成的入射短波辐射增加。同时,大气温度升高导致的向下长波辐射增强对北非—南欧地区以及蒙古地区的增暖都有显著贡献。此外,东北亚地区云的减少是造成其地表增暖最主要的过程,而南亚地区则是水汽增加和感热通量减少造成的增温与云和气溶胶增加造成的降温相抵消,因而温度变化幅度不大。  相似文献   

16.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

17.
利用国家重大科学研究计划项目"青藏高原沙漠化对全球变化的响应"北麓河站2014-2015年陆面过程观测资料,根据5 cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,分析了地表感热通量Hs、潜热通量LE、地表土壤热通量G_0和波文比在不同冻融阶段的季节和日变化特征,并探讨了土壤冻融过程对地表能量及其分配的影响。结果表明,波文比和G_0的季节变化受土壤冻融阶段转变的影响显著,其中土壤完全融化使波文比减小,G_0变为正值;土壤冻结使波文比增大,G_0变为负值。冻结过程对Hs和LE变化趋势的影响不明显,但是使波文比显著增大;融化过程使Hs停止增长并出现减小趋势,使LE增大,从而使波文比显著减小。Hs的日变化在不同冻融阶段差异较小。LE的日变化主要与浅层土壤含水量的大小和日变化有关,其中完全融化和完全冻结阶段土壤含水量的日变化较小,土壤含水量越大,LE越大;在融化过程和冻结过程阶段,土壤含水量的日变化较大,且与R_(net)的日变化相反,限制了LE的增长。在冻结过程阶段,受冻融过程的影响,G_0的日变化小于其他阶段。  相似文献   

18.
近60a来南京季节变化特征分析   总被引:2,自引:1,他引:1  
潘航 《气象科学》2011,31(6):742-746
利用1951年1月-2010年12月南京市逐日气温观测资料,依据张宝堃应用候平均气温稳定通过某一临界值划分四季的标准,建立了近60 a南京的季节平均气温的时间序列,分析了近60a南京春、夏、秋、冬四季开始、结束及持续时间的变化特征,给出了季节气温的变化趋势以及候平均与入季时间、季节持续时间的相关分析.结果表明:近60a,南京入冬时间推迟,入夏时间提前.冬季变短,缩短的平均速率为2.9 d/10a;夏季变长,增加的平均速率为4.1d/10a;秋季变短,缩短的平均速率为1.5d/10a;春季略有些变长.南京冬、春季平均气温升高,且冬季气温升高更为显著,而夏、秋季平均气温下降,秋季气温下降略明显于夏季.冬季最低气温有升高的趋势,夏季最高气温与年较差有下降的趋势.春季入季时间与春季的平均气温成正相关,而秋季的入季时间与秋季平均气温成负相关;夏季的平均最低气温和平均气温与夏季的长度成负相关,冬季的平均最高气温和冬季的长度成正相关.  相似文献   

19.
应用MODIS地表反照率产品MCD43C3,结合青藏高原自然带数据、积雪覆盖率和植被指数数据,采用一元线性回归方法分析了2000~2016年青藏高原地表反照率的分布及变化特征,结果表明:1)高原地表反照率空间分布差异大,整体上东南部低、西北部高,受地形和地表覆盖影响较大。2)高原地表反照率四季的空间分布变化明显,高海拔山脉和高寒灌丛草甸是高原地表反照率年内和年际变化的敏感地区。3)高原地表反照率年变化介于0.19~0.26,一定程度上表现为“双峰单谷”型,与地表覆盖类型的季节变化密切相关。4)高原地表反照率年际变化整体呈缓慢波动减小的趋势,平均变率约为-0.4×10-3 a-1,减小的区域约占高原总面积的66%,川西 —藏东针叶林带的西南部地区减小得最快,减小速率超过1.0×10-2 a-1。5)高原地表反照率减小与冰川消融和积雪减少密切相关,高原植被覆盖改善也是一个重要因素。  相似文献   

20.
利用2011年10月至2017年12月黄河源区鄂陵湖野外观测数据,对比分析多雪年与少雪年土壤冻结与消融时间、土壤温湿度、地表能量分量的变化特征。结果表明:多雪年地表反照率偏高,净辐射偏低,地表感热输送偏低,土壤由热“源”转为热“汇”的时间晚于少雪年。积雪可减少土壤吸收辐射能量,减少地表感热通量,在土壤完全冻结期与消融期增大地表潜热通量,在完全冻结期,减少土壤向大气的热输送,在消融期,减少大气向土壤的热输送。积雪在冻结期有降温作用,使得多雪年土壤较早发生冻结,且同一时期土壤温度偏低;在完全冻结期有保温作用,使得土壤温度偏高;在消融期有保温(“凉”)作用,使得消融较晚,且同一时期土壤温度偏低。在整个积雪年内,多雪年浅层土壤湿度高于少雪年,积雪对浅层土壤有保湿作用。积雪使土壤开始冻结时间有所提前,开始消融的时间有所滞后,可延长该年土壤完全冻结持续天数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号