首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用耦合Morrison 2-mon(MOR)双参数微物理方案的中尺度天气研究与预报模式(WRF)中的单气柱模式,对热带暖池国际云试验(TWP-ICE)期间的个例进行数值模拟。通过与观测资料和云分辨率模式的模拟结果进行对比,检验MOR方案对热带对流云系的微物理特征的模拟能力。模拟结果显示:MOR方案能够较好地模拟出热带云系中液相和冰相水凝物的垂直分布以及随时间的演变特征。地表向下长波辐射和大气顶向外长波辐射的量级和时间演变趋势同观测也非常接近。对与冰晶和雪有关的云微物理特征分析之后发现:季风活跃期,冰晶主要的源汇项有凝华增长过程、沉降过程、冰晶向雪的自动转化以及冰晶被雪碰并的过程。由于冰晶主体位于温度低于―20℃的高空,因而它对雨水的形成主要是间接贡献。同时期雪的主要源汇项中,凝华增长和沉降过程占据着主导地位。雪的凝华过程消耗了大量的水汽,可能抑制了冰晶的增长。另外雪的融化过程非常强盛,是产生降水的重要因子。季风抑制期,冰相的微物理过程变得相对简单且整体削弱,以凝华升华和沉降过程为主。凝华凝冻核的数浓度(Ndep)的气溶胶敏感性试验表明:季风抑制期,高空的冰晶云的宏观和微观性质对凝华凝冻核数浓度的响应情况呈现显著的线性特征。冰晶的含量随着Ndep的增加而增加,反之降低。该时期微物理过程主要同冰晶有关,水分的分配较为简单,Ndep增加时,高空冰云中小冰晶粒子数目增多且云顶升高,使得大气顶部向外长波辐射(OLR)值减小,反之冰云主体中冰晶有效半径增加,高空的冰云更加透明,云顶更低,对 OLR值增加起促进作用。而季风活跃期,微物理过程复杂,冰晶云的宏微观特征对Ndep的响应表现出一定的不规律特征。  相似文献   

2.
利用耦合Milbrandt 2-mon(MY)和Morrison 2-mon(MOR)两种双参数微物理方案的WRF中的单柱模式,对TWP-ICE(Tropical Warm Pool International Cloud Experiment)试验期间的个例进行数值模拟。通过与观测资料和云分辨率模式的模拟结果进行对比发现:两种双参数微物理方案能较好地模拟出TWP-ICE期间热带云系的宏观和微观的特征。模拟的降水率、地表向下长波辐射和大气顶向外长波辐射的量级、时间演变趋势与观测相一致;总的液相和冰相水凝物的垂直分布以及随时间的演变特征总体与观测以及云分辨率模式的结果也较接近。在整个时期,两种方案水云中的雨滴宏观和微观特征差异较小,而云滴混合比在两种方案之间的差别显著;冰晶对冰云的贡献在MY方案中占据主导地位,而MOR方案中雪在冰云中扮演的角色相比于在MY方案中更为重要。微观上与MY方案相比,MOR方案中的云滴是由数量更大的小云滴构成,但冰晶却是由数量较少的大冰晶粒子构成。微物理过程转换率的区别是造成两种方案冰云宏观分布特征差异的主要原因。与冰晶和雪有关的微物理过程转换分析表明:活跃期两种方案中与冰晶有关的主要微物理转换项有冰晶的凝华增长、冰晶向雪的自动转化、冰晶被雪碰并以及冰晶的沉降过程。而雪主要的转换项包含沉降和凝华过程等,其中MY方案中雪的主要转换项更为丰富。该时期两种方案冰晶和雪的主要微物理转换项的垂直分布以及量级特征的差异同冰云的宏观分布相一致。季风抑制期,两种方案中冰晶主要的源汇项包括凝华增长和沉降过程。MY方案中凝华凝冻核化也是主要的源汇项之一。抑制期MOR方案中高空的雪发展较强,参与的微物理过程较MY方案更为丰富,主要转换项比MY方案高出约一个量级。  相似文献   

3.
李喆  马占山  刘奇俊  杨军丽 《气象》2019,45(6):756-765
应用全球-区域同化预报系统单柱模式(GRAPES_SCM),对热带暖池国际云试验(TWP-ICE)个例进行数值模拟。通过和实际观测资料进行对比,诊断并改进了Liuma云微物理方案对热带对流云微物理特征的模拟能力。结果显示在GRAPES_SCM框架下,Liuma原方案和WSM6(WRF single moment)方案均能呈现出TWP-ICE期间热带云系的发展特征,并能够明显区分试验期间的季风活跃期和季风抑制期。活跃期Liuma原始方案和WSM6方案模拟的冰云组成结构差异显著,在Liuma原始方案所模拟的冰相水凝物分布中,存在冰雪含量过少、霰过多的现象。改进后的Liuma方案对程序中各微物理过程计算顺序进行了优化,改进后霰质量混合比明显减少,冰雪质量混合比明显增加,冰相水凝物分布较合理。  相似文献   

4.
台风螺旋雨带云结构和降水形成机制研究   总被引:1,自引:1,他引:0  
杨文霞 《气象》2013,39(2):194-202
应用数值模式结果,选择台风登陆后两个不同时次螺旋雨带中两个强降水中心,对台风螺旋雨带的云结构和降水形成机制进行诊断分析.结果发现螺旋雨带云结构和降水形成机制有如下特点:在9~13 km高空范围内冰晶的非均质核化非常活跃,冰晶转化率高于台风眼壁暴雨数倍,但是冰晶通过贝吉龙过程生长为雪、雪通过凝华增长生长为霰的过程相对台风眼壁很弱,螺旋雨带雨水形成微物理机制以霰粒子融化成雨水(pgmlt)为主,冰相粒子转化率大值区位于垂直上升气流大值区,8 km高度霰收集雪(dgacs)干增长是最主要的冰相粒子生长过程,与北方层状云比较,螺旋雨带暴雨冷云中的凝华过程和撞冻过程非常活跃.螺旋雨带云水凝结过程呈双峰型,位于7~8 km高度冷云区的云水凝结峰值较大,暖云区0.5~1.5 km高度云水凝结峰值次之.  相似文献   

5.
《气象》2021,(9)
国家气象中心GRAPES区域业务模式对2019年11月29—30日在华北地区降雪过程的预报出现显著高估现象,针对该模式中采用的WSM6云微物理方案进行了深入分析,并与Liu-Ma云微物理方案以及ERA5再分析数据进行比较,探究其可能存在的原因。主要结论如下:冰晶和雪的沉降是WSM6方案在本次地面降雪形成的最主要贡献,Liu-Ma方案则是以大粒子雪和霰的沉降为主,冰晶产生的贡献较少。WSM6方案严重低估了大气中的液态水含量,冰相粒子构成中以冰晶含量为最多,雪含量次之,这些特征都与ERA5资料和Liu-Ma方案有显著的不同,后两者具有较好的一致性。与Liu-Ma方案相比,WSM6方案在模式低层冰晶含量更高、冰晶平均落速更大,二者共同作用使冰晶沉降在本次降水形成中具有重要贡献;WSM6方案中雪的平均落速大于Liu-Ma方案,这是其雪的柱积分总量小而雪的沉降降水多于Liu-Ma方案的直接原因。在WSM6方案中冰晶的凝华/升华过程在冰相微物理过程中占据主导地位,致使雪和霰的凝华过程以及云水凝结过程都明显不足,这是该方案冰晶偏多、雪偏少、液水明显偏少的主要原因。针对冰晶凝华/升华过程(SVI)的敏感性试验发现,SVI转化率与地面降水呈正相关关系、与液水柱积分总量呈"跷跷板"关系,当降低SVI的转化率,地面降雪将显著减少,而柱积分液水总量则会明显增多。  相似文献   

6.
北京一次突发性降雪的云场结构特征分析   总被引:3,自引:0,他引:3  
潘晓滨  王舒畅  李毅 《气象科学》2005,25(2):111-117
本文对利用三重嵌套的高分辨率中尺度模式对北京一次突发性降雪过程进行了数值模拟。重点分析伴随降雪过程的云各微物理含量构成和云场三维图像的演变特征,初步分析表明:此次降雪过程中云中的主要成份是冰晶粒子,雪其它粒子的含量较少,冰晶粒子含量随时间呈由高空向低空增加的趋势,它在降雪过程中起重要作用;云的三维结构图也清楚地反映云顶有不断降低和向下伸展过程,这与冰晶粒子的增长和沉降有关。  相似文献   

7.
20世纪利用一维层状云模式对2002年4月4~5日河南省冷锋降水过程进行了模拟。数值模拟结果显示,此次冷锋降水属于冷云降水过程,冷锋前后云中主要以冰相粒子为主,云中水质粒自上而下的空间分布依次为冰晶、雪、云水、霰、雨水。冷锋前后,各种水质粒有着不同的含量及数密度,但形成水质粒的主要微物理过程都表现为:冰晶数密度的增加主要依靠核化、繁生,大部分雪主要靠凝华、撞冻过冷云水和冰晶增长,霰的质量增加主要靠撞冻雪、过冷云水和雪自动转化而来,大部分的雨水是由霰融化而来,因而此次冷锋降水机制表现为“水汽—雪—霰—雨水”。  相似文献   

8.
周志敏  崔春光  胡扬  康兆萍 《大气科学》2021,45(6):1292-1312
梅雨锋暴雨中的云微物理过程对降水的演变有着重要影响。本文通过WRF模式(3.4.1版本),针对2018年6月29~30日一次梅雨锋背景下的暴雨过程进行数值模拟,分别采用了Morrison、Thompson和MY云微物理参数化方案进行对比分析,结果发现:(1)三个方案模拟的背景场在天气尺度上,都与ERA5再分析资料一致,能够模拟出有利于强降水发生的环流场。云微物理过程对梅雨期暴雨的局地环流有着显著影响,不同方案存在明显差异,本次过程中,Thompson方案模拟出更强的局地环流系统变率和上升气流。三个方案的模拟降水均有所夸大,小时降水率始终大于观测值。冰相粒子融化或雨滴搜集云滴的高估可能是造成降水模拟值偏强的重要原因之一,总体来看,Morrison方案的模拟效果相对最优。(2)冰相粒子融化、雨滴搜集云滴是雨滴增长的关键源项,蒸发则是其最重要的汇项。总的来说,雨滴对云滴的搜集量大于冰相粒子融化。但上述过程在不同方案中存在空间上的差异,从而使得模拟降水的空间分布存在差异。(3)Thompson方案中,冰相粒子融化量最大,雨滴蒸发项显著大于其它两个方案,在底层表现得最为明显。同时,该方案水汽凝结效应最强,使得雨滴搜集更多云滴。该方案模拟的雨滴最多,降水最强。该方案中凝华的主要产物为雪,且其在与过冷水碰并增长过程中占主导地位,故模拟的雪最多。(4)Morrison方案中,水汽主要凝华为雪和少量霰(冰晶忽略不计);Thompson方案中水汽基本凝华为雪,其它冰相粒子极少;MY方案中,水汽主要凝华为雪和冰晶,冰晶总量略少于雪,但显著大于其它方案。(5)云滴在凇附过程中的总体贡献大于雨滴。Morrison和MY方案中,霰粒子搜集云滴增长的量均最大。Morrison方案中,其它凇附过程不同程度发挥作用,而MY方案中,其它凇附过程几乎可忽略不计。并且,霰粒子搜集云滴的增长量大于凝华过程产生的雪粒子总量。贝吉龙及凇附效应的差异,是不同方案中冰相粒子分布差异的关键原因之一。  相似文献   

9.
利用中尺度气象模式WRF的双参数显示云物理方案,开展冬季冷性层状云降水过程的数值模拟和人工增雨催化数值试验。模拟个例为2013年3月19日北京地区的一次典型降水过程,在分析模拟得到的云中水成物和上升速度分布的基础上设计不同催化试验,研究不同催化时刻(云体发展期、云体成熟期)和三种催化剂量对地面降水、云中水成物浓度、动力场和热力场以及微物理转化过程的影响。模拟试验结果表明:模拟的自然降水分布和实测结果较为一致;不同的催化试验都可以使地面雨量增加,在云体发展期以107个·kg-1剂量进行催化的效果最佳;引入人工冰晶后催化区域水汽和过冷云水含量明显减少、冰晶和雪的含量有所增加、催化区域上升气流明显增强,温度提高;催化后40 min时雪的增长主要依靠其凝华增长、冰晶向雪的自动转化、雪和云滴之间的碰冻以及冰晶和雪之间的碰并;催化后200 min,催化云中各种微物理过程对雪的贡献高于自然云,催化前期消耗了过冷云水,此时云中雪和云滴之间的碰冻对雪的贡献非常微弱,雪的增长主要依靠凝华增长以及雪和冰晶的相互作用。  相似文献   

10.
一次低槽冷锋层状云系结构和过冷水分布特征的模拟研究   总被引:1,自引:1,他引:0  
刘涛  孙晶  周毓荃  彭冲  闫非 《气象》2015,41(10):1232-1244
本文利用耦合了CAMS云微物理方案的WRF中尺度模式的模拟结果结合飞机、卫星、雷达、地面雨量等观测资料,对2012年9月25日山西一次低槽弱冷锋降水层状云系的宏微观结构和过冷水分布特征进行分析,试图研究低槽冷锋层状云系结构特征及过冷水形成的宏微观条件,为人工增雨作业提供依据。模拟的天气形势、降水、云顶温度、雷达回波、水成物的演变与实测基本一致。结果表明:此次降水过程的系统为低槽弱冷锋,且锋面后倾,位于锋前的云系前部为高层冷云,云顶温度-40℃左右,以冰相粒子组成,没有降水;锋区云系变成高层冷暖混合云,冷区以少量过冷水和大量冰相粒子组成,地面降水最大;处于锋后的云系后部为高层冷云,云顶温度-30℃左右,不存在过冷水,以较少冰相粒子组成,地面降水较弱。过冷水主要分布在锋面前方低于-5℃层,高度偏低、含量偏少,过冷水一方面因垂直上升速度供应水汽维持,另一方面因冰相粒子的凝华而消耗。过冷水层及其下部上升运动较弱、而其上部上升运动较强,不利于在过冷区长时间维持大量液态水,反而促使冰相粒子发展旺盛,此处水汽相对水面不饱和、相对冰面饱和,大量冰相粒子消耗水汽,不利于过冷水的存在,导致云场仅存在少量过冷水。本次过程中,冰核浓度的增大仅增大冰晶浓度,对雪霰含量及-5~0℃的过冷水几乎没有影响。  相似文献   

11.
利用耦合Milbrandt 2-mon(MY)双参数微物理方案的WRF中的单柱模式,对TWP-ICE试验(Tropical Warm Pool International Cloud Experiment)期间的个例进行数值模拟和敏感性试验。通过与观测资料和云分辨率模式的模拟结果进行对比发现:MY方案默认的双参数版本和单参数版本均能够再现TWP-ICE期间的热带云系的总体宏观和微观特征。MY方案的双参数版本模拟的降水率的演变特征同观测十分吻合,冰相粒子的微观特征同观测事实较为一致。单参数默认版本的降水率、液态云的构成及冰相粒子微观特征方面同观测事实存在明显差距。然而实际业务应用中单参数方案由于计算量较小应用更为广泛,但模拟效果有待改善。为了使方案保持计算量较为合理的同时具有较好的模拟效果,参考双参数控制试验中的冰相物质的微观特征,尝试对单参数方案中冰相粒子的单参数方法进行改进。冰晶单参数改进试验中虽然对于冰晶数浓度采用两种不同的处理方法,但模拟效果均未明显改善。其中冰云总含量更加接近观测,且冰云构成发生显著变化,主要归因于冰晶有效半径的减小间接削弱了雪和霰的发展。云滴含量的异常增强导致液态水含量比观测偏高约一个量级,暖云异常增厚则与上升运动的增强直接相关。雨水含量明显增强及雨滴有效半径减小综合导致了降水率仅有微弱改善。雪的单参数改进试验中,雪的截距值增加及环境场过饱和条件改善促进了冰云的发展。通过适当调整雪的截距的经验诊断公式,雪的截距、液态水含量以及降水率均得到较好的改善;而指定雪截距为常数的处理方式使液态云更为偏厚,降水率演变细节同观测仍然差异显著。改进试验结果表明,单参数方案中采用适当的经验公式诊断雪的截距的处理方法对改善单参数方案的模拟能力具有一定的可行性。  相似文献   

12.
"催化-供给"云降水形成机理的数值模拟研究   总被引:21,自引:9,他引:12  
洪延超  周非非 《大气科学》2005,29(6):885-896
利用含有详细微物理过程的一维层状云模式模拟,研究了2002年4月5日冷锋降水性层状云云系中"催化-供给"云的微物理结构、降水粒子形成的环节和微物理过程,并从降水形成的环节和云的结构分析人工增雨的条件.结果说明,"催化-供给"云具有显著的分层结构:云内高层是冰晶,下层是雪,接下来是霰和过冷云水组成的冰水混合层,最下方是云中暖区的液水层.作为催化云层的冰水层对降水的贡献约25.5%,冰水混合层为31.3%,液水层为43.1%,亦即供给云对降水的贡献约74.4%.具有"催化-供给"云结构的层状云降水形成的主要环节是:冰晶通过凝华增长转化成雪,雪撞冻过冷云水、收集冰晶和凝华增长转化形成霰,霰靠撞冻过程、收集雪过程长大,从而形成可以降落到云的暖区融化形成雨水的粒子,它对降水的贡献较大.凝华和撞冻增长过程是冰粒子增长的主要物理过程,也是雨水产生的重要过程."催化-供给"云体系是重要的人工增雨条件,云中水汽对雨水形成的贡献与过冷云水几乎相当,与过冷云水一样,水汽也是人工增雨的重要条件.  相似文献   

13.
东北冷涡中尺度云系降水机制研究 II: 数值模拟   总被引:1,自引:1,他引:0  
在利用卫星、雷达和机载PMS(粒子测量系统)等观测资料对2003年7月8日东北冷涡积层混合云系的降水形成机制分析的基础上,将观测分析与数值模拟研究相结合,用中尺度数值模式对积层混合云系做数值模拟,并结合观测资料进一步分析了积层混合云系的微物理结构、粒子形成过程和降水形成机制,获得如下结果:(1)混合云中对流云具有分层的微物理结构.冰晶含水量最大值出现的高度最高,其次由高到低的排序是雪、云水、霰和雨;雨水主要出现在云的暖区;各种粒子中以雨水含水量最高,其次是霰.对流云体生命期较长,微物理结构基本稳定.(2)粒子形成增长过程有差异.冰晶通过凝华过程增长.雪主要来源于冰晶,产生后主要通过撞冻、收集冰晶和凝华过程增长,其中撞冻过冷云水增长对雪质量贡献最大,其产生率极大值高度与过冷云水相当.丰富的过冷云水,给雪的撞冻增长提供了有利条件.在高、中和低层雪的形成有着不同的机制,高层雪收集冰晶长大后,下落到低层又以雪撞冻过冷云水的结淞增长为主要过程.霰主要由雨滴冻结和雪的转化产生,过冷雨滴与冰晶接触冻结成霰;过冷雨滴收集雪,雪随着雨滴的冻结而转化成霰.因此霰的产生与过冷雨滴关系极大.霰主要撞冻云水、收集雪和冰晶增长,其中撞冻是霰的重要增长过程.雨水主要由霰的融化形成,降水主要是由冷云过程产生的.在过冷层,霰撞冻增长占优势.云上部的冰晶和雪对云的中部具有播撒作用,过冷层中存在丰富的过冷水,对冰相粒子的撞冻增长有利.对云水消耗的分析表明,雨滴对云滴的收集、霰和雪对云水的撞冻增长是消耗云水的主要过程.(3)从各种粒子的形成和增长过程可以看出,大部分雨水由霰融化形成,暖云过程贡献要小得多.可见,降水主要是由冷云过程产生的,这与观测分析的结果一致.  相似文献   

14.
北方两次不同类型降雪过程的微物理模拟研究   总被引:13,自引:0,他引:13       下载免费PDF全文
孙晶  王鹏云  李想  逯莹 《气象学报》2007,65(1):29-44
利用中尺度模式MM5分别模拟了中国北方地区两次不同类型的降雪过程:2001年12月7—8日的北京小雪和1999年11月23—24日的辽宁雨转雪过程。文中还从微物理角度研究了这两次降雪过程,分析不同天气条件下降雪的水成物相态及其源汇项分布特点,并初步探讨云物理过程对降水热力、动力过程的反馈作用。重点分析了云物理变量的模拟结果,计算时采用输出水成物源、汇项小时累计量的方法,讨论了最大降水时段内各源、汇项的分布特征,并通过敏感性试验,分析了水成物相变潜热作用和降水粒子的拖曳作用对云的反馈影响。结果表明,云中水成物相态分布与温度有密切关系,北京小雪过程为气、固两相粒子作用,辽宁雨转雪过程为气、液、固三相粒子相互作用;在最大降水时段内,雪的产生主要来自于水汽凝华增长和雪收集冰晶增长,过冷水对形成霰很关键,冰相粒子融化加强雨的形成;降雪过程对热力、动力过程具有一定的反馈影响,相变潜热对上升运动和降水有正反馈作用,降水粒子下落拖曳力对上升运动和降水有负反馈作用。辽宁降雪过程降水粒子丰富,云物理过程对降水热力动力过程的反馈作用比北京小雪要强一些。  相似文献   

15.
基于观测资料和中尺度数值模式WRF对2019年2月14日发生在北京地区的一次典型低涡低槽型降雪系统进行了观测资料分析和数值模拟,研究了降雪产生的云微物理机制,探讨了雪的形成过程并进行了人工催化降雪的数值模拟分析。结果表明:低涡前部暖湿平流带来的水汽和低涡切变线附近强烈的上升运动造成了此次区域性大雪;雪的凝华增长、雪降落过程中凇附云水继续长大、云冰自动转换为雪、冰晶和雪碰并聚合是此次降雪的主要微物理过程。催化模拟显示,人工播撒碘化银催化剂之后,云中产生大量冰晶,增多的冰晶通过凝华增长、碰并、聚合、凇附等转换成雪的过程增加,进而造成地面降雪的增加。  相似文献   

16.
一次雨夹雪转暴雪天气过程的微物理模拟研究   总被引:3,自引:1,他引:2       下载免费PDF全文
利用非静力平衡中尺度数值模式MM5,在四重嵌套网格区域内采用Reisner霰方案,对2009年2月12—13日辽宁雨夹雪转暴雪天气过程进行数值模拟,并对云内微物理过程特别是对雨水、雪和霰的源项进行分析。结果表明:雨水与雪碰并和雨水与云水碰并是产生雨水的主要微物理过程,并且雨水的增长主要分布在700hPa以下。300hPa—200hPa之间雪的凝华增长、冰晶向雪的自动转化和900hPa以下雨水与雪碰并成雪是雪增长主要的物理过程。冰晶向雪的自动转化对降雪的增长和长时间维持起到了重要作用。列出了此次天气过程降水云系的三层云结构及微物理过程模型。  相似文献   

17.
层状云微物理过程的数值模拟(一)——微物理模式   总被引:19,自引:8,他引:19       下载免费PDF全文
本文提出了一个比较完整的层状云参数化微物理方程组。根据理论和实验结果推导了18种层状云中常见的微物理过程中云滴、雨滴、冰晶、雪团和霰的群体比水量和比浓度的转化率,它们包括凝结(蒸发)、凝华、碰并、聚合、凇附、冰晶的核化、繁生以及冰—霰、雪—霰、云—雨的自动转化率等。  相似文献   

18.
冰云是影响气候变化最为重要的因子之一,其生命周期的变化在很大程度上决定了冰云的气候辐射效应。冰云粒子下降末速度是影响冰云生命周期的关键参数。为了开展对冰云粒子下降末速度的研究,利用兰州大学半干旱气候与环境监测站Ka波段毫米波云雷达2013年8月至2015年7月连续观测数据,反演了冰云粒子的下降末速度(Vt),并根据雷达反射率因子(Z)与Vt的关系计算了拟合因子a、b的值;在此基础上应用聚类分析方法,对比分析了4种不同特性冰云Z、Vt和拟合因子a、b的时、空分布特征,进而尝试通过参数垂直分布特征识别研究云中不同位置上云微物理过程的变化。结果表明:冰云粒子下降末速度的分布与雷达反射率因子有很好的对应,最大频率都出现在距离地面约7 km高度处,且具有显著的季节变化,粒子下降末速度在暖季较冷季可增大25%,峰值出现在6月和9月;云层较厚且持续时间长的第一、三类冰云,其雷达反射率因子、粒子下降末速度及拟合因子a和b的平均值都显著大于云层较薄且持续时间短的第二、四类云。垂直方向上,Z、Vt和拟合因子b从云顶到云底随着高度的降低呈现先增大后减小的趋势,体现了云粒子在云顶区域成核和水汽凝华效应,随着粒子在下落过程中碰并增长,云滴粒子逐渐增大,水汽的凝华和粒子的聚合起主要作用,最后在云底部分,云粒子蒸发、升华减小消亡的过程。由此表明中纬度干旱半干旱地区冰云是从云顶到云底自上而下的形成过程。   相似文献   

19.
利用2011—2020年ERA5再分析降水资料、CERES云物理参数产品,分析新疆云参数的时空变化分布特征,归纳总结云物理参数与降水的相关性,结果表明:1)云水路径(冰相)值、云粒子有效半径(冰相)、云光学厚度与降水量的空间分布一致,均为山区最大,北疆次之,南疆最小。2)夏季(6—8月)在南、北疆、山区云水路径(液、冰相)、云顶(底)温度、云光学厚度与降水量呈同位相变化;云粒子有效半径(液、冰相)、云顶气压与降水量呈反位相变化。3)夏季(6—8月)北疆、山区的云水路径(液、冰相)值、云顶(底)温度、云光学厚度,南疆云光学厚度与降水量呈正相关;北疆云粒子有效半径(冰相),南疆云粒子有效半径(液相)、云顶气压,山区云粒子有效半径(液、冰相)、云顶气压与降水量呈负相关。  相似文献   

20.
降水性层状云系结构和降水过程的观测个例与模拟研究   总被引:7,自引:8,他引:7  
2004年7月4~6日, 在我国东北地区有一次大范围的降雨过程。作者分析了此次层状云降雨的观测资料, 包括机载PMS资料、雷达资料以及地面雨强计资料等, 并用包含详细微物理过程的一维层状云模式进行了数值模拟, 用顾震潮的三层概念模型(把层状云垂直结构分为三层:第一层为冰晶层, 第二层为过冷水层, 第三层为暖水层)分析了云的结构及降水形成过程。结果表明, 这个模型基本反映了降水性层状云的结构和降水产生的物理过程。在第一层中, 冰晶的凝华增长很重要, 也存在冰晶的碰并过程。在第二层中, 冰晶和雪的增长主要是通过凝华过程, Bergeron过程作用很大, 但不同时刻Bergeron过程的作用程度不同。第三层中主要有云滴、雨滴和从第二层降落下来以后融化的雪和霰。云的第一层对第二层有播种作用, 冰晶层对降水的贡献为7%, 过冷水层对降水的贡献为54%, 暖水层对降水的贡献为39%, 降水的产生中冷云过程作用稍大, 但暖云过程也起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号