首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparison study for the solar radiative flux above clouds is presented between the regional climate model system BALTEX integrated model system (BALTIMOS) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. For MODIS, an algorithm has been developed to retrieve reflected shortwave fluxes over clouds. The study area is the Baltic Sea catchment area during an 11-month period from February to December 2002. The intercomparison focuses on the variations of the daily and seasonal cycle and the spatial distributions. We found good agreement between the observed and the simulated data with a bias of the temporal mean of 13.6 W/m2 and a bias of the spatial mean of 35.5 W/m2. For summer months, BALTIMOS overestimates the solar flux with up to 90 W/m2 (20%). This might be explained by the insufficient representation of cirrus clouds in the regional climate model.  相似文献   

2.
The present study is an attempt to analyse the precipitable water vapour (PWV) derived from Global Positioning System (GPS) and observed meteorological data over Almora, Central Himalayan Region. The PWV values derived using GPS study is compared with the corresponding moderate resolution imaging spectro-radiometer (MODIS) data. The statistical analysis reveals a positive correlation between both methods. Moderate resolution imaging spectroradiometer near-infrared (MODIS NIR) clear column water vapour product shows a higher correlation (R 2 = 90–93 %) with GPS-derived precipitable water vapour on annual scale as compared to the seasonal scale (R 2 = 62–87 %). MODIS is found to be overestimating in NIR clear column where the magnitude of bias and RMSE show systematic changes from season to season. Monsoon is an important phenomenon in the Indian weather context and holds significant importance in Central Himalayan ecosystem. The monthly and seasonal variation in precipitable water vapour is related with monsoon onset in the region. Diurnal variations in precipitable water vapour are studied with other meteorological data over Almora during dry and wet season. The precipitable water vapour had minimum value in the morning, increases in the afternoon to evening and again decreases to the midnight in both the dry and wet seasons. These results suggest that diurnal variation of water vapour is caused by the transport of water vapour by thermally induced local circulation.  相似文献   

3.
The BALTEX Integrated Model System (BALTIMOS) coupled atmosphere ocean model was compared to passive microwave observations of the Advanced Microwave Scanning Radiometer (AMSR-E). Emphasis was put on quantifying the uncertainties associated with the different variables based on data screening both in the model and observations. Monthly means of three atmospheric parameters, as well as sea surface temperature, were compared for a period of 1 year. Sea ice extent was also derived from AMSR-E and compared to the model data on a daily basis. It is shown that the accuracy of the comparisons on a monthly mean basis is limited by precipitation screening. Out of the three atmospheric parameters, surface wind speed and water vapor column amount agree with the model data to within the accuracy of the comparison. The vertically integrated cloud liquid water content diagnosed from BALTIMOS is systematically higher than the liquid water content derived from satellite, even if potential systematic errors are accounted for. In terms of coupling, the two most relevant variables discussed are sea surface temperature and sea ice extent. The temporal extent of sea ice in the investigation area is well represented, as are the periods of the main growing and decay periods. The total sea ice cover appears to be underestimated by BALTIMOS, especially in the peak season between January and the beginning of March. The amplitude of the annual cycle of sea surface temperature in BALTIMOS appears to be too weak compared to the observations, leading to too cold sea surface temperatures in summer and too warm sea surface temperatures in winter. This might also partially explain the underestimation of sea ice cover by BALTIMOS.  相似文献   

4.
Observational data and simulations of the regional climate system Baltic integrated model system (BALTIMOS) were used to study precipitation in the Baltic Sea and its drainage basin with a special focus on the diurnal cycle. The study includes a general evaluation of BALTIMOS precipitation, showing that BALTIMOS has too many light rain events causing an overestimation of the total annual precipitation amount. The diurnal cycle as well as its spatial distribution was analysed. BALTIMOS captures the broad characteristics: a significant diurnal variability with an afternoon peak above land and weak variability with a nocturnal peak above sea. An algorithm to distinguish between frontal and convective precipitation was applied to examine the diurnal cycle more thoroughly. The local solar time of maximum rain in summer is about 1 to 2 h earlier in BALTIMOS than in radar observations of precipitation.  相似文献   

5.
The regional model REMO, which is the atmospheric component of the coupled atmosphere–ice–ocean–land climate model system BALTIMOS, is tested with respect to its ability to simulate the atmospheric boundary layer over the open and ice-covered Baltic Sea. REMO simulations are compared to ship, radiosonde, and aircraft observations taken during eight field experiments. The main results of the comparisons are: (1) The sharpness and strength of the temperature inversion are underestimated by REMO. Over open water, this is connected with an overestimation of cloud coverage and moisture content above the inversion. (2) The vertical temperature stratification in the lowest 200 m over sea ice is too stable. (3) The horizontal inhomogeneity of sea ice concentration as observed by aircraft could not be properly represented by the prescribed ice concentration in REMO; large differences in the surface heat fluxes arise especially under cold-air advection conditions. The results of the comparisons suggest a reconsideration of the parameterization of subgrid-scale vertical exchange both under unstable und stable conditions.  相似文献   

6.
7.
The vertically integrated horizontal energy transports and the vertically integrated vertical energy flux divergence from ERA-40 and ISCCP are not in balance assuming a stationary climate as a time mean over several years. The reasons are the inherent uncertainties in each of the respective data sets. We therefore modify them using a variational approach with a discretization in spherical harmonics to obtain consistent values. The variational approach only modifies the smaller yet more uncertain divergent part of the flow, leaving the large rotational part untouched. From these consistent fields we can calculate posterior covariance matrices of the vertically integrated horizontal energy transport and the vertically integrated vertical energy flux divergence, providing a measure of the uncertainty of the previous calculation. We are able to use these posterior covariance matrices to give an estimate of the uncertainty of the zonally and vertically integrated meridional energy transport, which is about 0.25 PW in the tropics and 0.04 PW in high latitudes, as well as for the vertical energy flux divergence of the atmosphere, which ranges from 2.5 to 5 W/m2 in the tropics to 15–17 W/m2 in high latitudes.  相似文献   

8.
Long-lasting floods buffer the thermal regime of the Pampas   总被引:1,自引:0,他引:1  
The presence of large water masses influences the thermal regime of nearby land shaping the local climate of coastal areas by the ocean or large continental lakes. Large surface water bodies have an ephemeral nature in the vast sedimentary plains of the Pampas (Argentina) where non-flooded periods alternate with flooding cycles covering up to one third of the landscape for several months. Based on temperature records from 17 sites located 1 to 700 km away from the Atlantic coast and MODIS land surface temperature data, we explore the effects of floods on diurnal and seasonal thermal ranges as well as temperature extremes. In non-flooded periods, there is a linear increase of mean diurnal thermal range (DTR) from the coast towards the interior of the region (DTR increasing from 10 to 16 K, 0.79 K/100 km, r 2 = 0.81). This relationship weakens during flood episodes when the DTR of flood-prone inland locations shows a decline of 2 to 4 K, depending on surface water coverage in the surrounding area. DTR even approaches typical coastal values 500 km away from the ocean in the most flooded location that we studied during the three flooding cycles recorded in the study period. Frosts-free periods, a key driver of the phenology of both natural and cultivated ecosystems, are extended by up to 55 days during floods, most likely as a result of enhanced ground heat storage across the landscape (~2.7 fold change in day-night heat transfer) combined with other effects on the surface energy balance such as greater night evaporation rates. The reduced thermal range and longer frost-free periods affect plant growth development and may offer an opportunity for longer crop growing periods, which may not only contribute to partially compensating for regional production losses caused by floods, but also open avenues for flood mitigation through higher plant evapotranspirative water losses.  相似文献   

9.
Temperature has long been accepted as the major controlling factor in determining vegetation phenology in the middle and higher latitudes. The influence of water availability is often overlooked even in arid and semi-arid environments. We compared vegetation phenology metrics derived from both in situ temperature and satellite-based normalized difference vegetation index (NDVI) observations from 1982 to 2006 by an example of the arid region of northwestern China. From the satellite-based results, it was found the start of the growing season (SOS) advanced by 0.37 days year?1 and the end of the growing season (EOS) delayed by 0.61 days year?1 in Southern Xinjiang over 25 years. In the Tianshan Mountains, the SOS advanced by 0.35 days year?1 and the EOS delayed by 0.31 days year?1. There were almost no changes in Northern Xinjiang. Compared with satellite-based results, those estimates based on temperature contain less details of spatial variability of vegetation phenology. Interestingly, they show different and at times reversed spatial patterns from the satellite results arising from water limitation. Phenology metrics derived from temperature and NDVI conclude that water limitation of onset of the growing season is more severe than the cessation. Phenology spatial patterns of four oases in Southern Xingjiang show that, on average, there is a delay of the SOS of 1.6 days/10 km of distance from the mountain outlet stations. Our results underline the importance of water availability in determining the vegetation phenology in arid regions and can lead to important consequences in interpreting the possible change of vegetation phenology with climate.  相似文献   

10.
Tazhong station, located at the hinterland of the Taklimakan Desert in northwest China, experiences frequent dusty weather events during spring and summer seasons (its dusty season) caused by unstable stratified atmosphere, abundant sand source and strong low-level wind. On average, it has 246.2 dusty days each year, of which 16.2 days are classified as sand and dust storm days. To better understand the characteristic of solar ultraviolet (UV) radiation and factors influencing its variations under such an extreme environment, UV radiation data were collected continuously from 2007 to 2011 at Tazhong station using UVS-AB-T radiometer by Kipp and Zonen. This study documents observational characteristics of the UV radiation variations observed during the five-year period. Monthly UV radiation in this region varied in the range of 14.1–37.8 MJ m?2 and the average annual amount was 320.7 MJ m?2. The highest value of UV radiation occurred in June (62.5 W m?2) while the lowest one in December (29.3 W m?2). It showed a notable diurnal cycle, with peak value at 12:00–13:00 LST. Furthermore, its seasonal variation exhibited some unique features, with averaged UV magnitude showing an order of summer > spring > autumn > winter. The seasonal values were 37.0, 29.1, 24.9 and 15.9 MJ m?2, respectively. In autumn and winter, its daily variations were relatively weak. However, significant daily variations were observed during spring and summer associated with frequent dust weather events occurring in the region. Further analysis showed that there was a significant correlation between the UV radiation and solar zenith angle under different weather conditions. Under the same solar zenith angle, UV radiation was higher during clear days while it was lower in sand and dust storm days. Our observations showed that there was a negative correlation between UV radiation and ozone, but such a relationship became absent in dusty days. The UV radiation was reduced by 6 % when cloud amount was 1–4 oktas, by 12 % when the cloud amount was 5–7 oktas, and by 24 % when the cloud amount was greater than 8 oktas. The relative reduction of UV radiation reached 26, 38, and 45 % in dust day, blowing sand day and sand and dust storm day, respectively. The results revealed that decrease in UV radiation can be attributed to cloud coverage and dust aerosols. Moreover, the reduction of UV radiation caused by dust aerosols was about 2–4 times greater than that caused by cloud coverage. These observational results are of value for improving our understanding of processes controlling UV radiation over sand desert and developing methods for its estimation and prediction.  相似文献   

11.
This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (τ) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (ΔSWA), wv (ΔSWwv), and aerosols (ΔSWτ) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as ?100 Wm?2 (?18%). The seasonal change of A produces an increase of SW by up to +25 Wm?2 (+4.5%). The annual mean radiative effect is estimated to be ?(21–22) Wm?2 for wv, and +(2–3) Wm?2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ΔSWwv by 0.93 Wm?2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by ?0.027, with a corresponding decrease in ΔSWA by 0.41 Wm?2 (?14.9%). Atmospheric aerosols produce a reduction of SW as low as ?32 Wm?2 (?6.7%). The instantaneous aerosol radiative forcing (RFτ) reaches values of ?28 Wm?2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEτ) for solar zenith angles between 55° and 70° is estimated to be (?120.6 ± 4.3) for 0.1 < A < 0.2, and (?41.2 ± 1.6) Wm?2 for 0.5 < A < 0.6.  相似文献   

12.
Reducing the large uncertainties in current estimates of CO2 sources and sinks at regional scales (102–105 km2) is fundamental to improving our understanding of the terrestrial carbon cycle. Continuous high-precision CO2 concentration measurements on a tower within the planetary boundary layer contain information on regional carbon fluxes; however, its spatial representativeness is generally unknown. In this study, we developed a footprint model (Simple Analytical Footprint model based on Eulerian coordinates for scalar Concentration [SAFE-C]) and applied it to two CO2 concentration towers in central Canada: the East Trout Lake 106-m-tall tower (54°21′N, 104°59′W) and the Candle Lake 28-m-high tower (53°59′N, 105°07′W). Results show that the ETL tower’s annual concentration footprints were around 103–105 km2. The monthly footprint climatologies in summer were 1.5–2 times larger than in winter. The impacts of land surface carbon flux associated with heterogeneous distribution of vegetation types on the CO2 concentration measurements were different for the different heights, varied with a range of ±5 % to ±10 % among four heights. This study indicates that concentration footprint climatology analysis is important in interpreting the seasonal, annual and inter-annual variations of tower measured CO2 concentration data and is essential for comparing and scaling regional carbon flux estimates using top-down or bottom-up approaches.  相似文献   

13.
Ammonia has a short residence time in the atmosphere and rapidly neutralizes acid gases that occur near its source, requiring a rapid measurement system for ammonia and particulate ammonium concentrations to better understand their sources, temporal variation of ammonia emissions, and the formation of secondary ammonium aerosols. A semi-continuous measurement system, consisting of a diffusion scrubber, a particle growth chamber, an air-liquid separator, and a fluorescent detector, was developed to determine both gaseous ammonia (NH3) and particulate ammonium (NH 4 + ) in PM2.5 in the ambient atmosphere of Gwangju, South Korea, during the months of March, April, July, and September of 2007. During the sampling periods, the average concentrations of ammonia and ammonium were found to be 2.33?±?1.29 μg/m3 and 1.89?±?0.99 μg/m3, respectively. Although the average gaseous ammonia concentration was highest in March, the particulate ammonium concentration was higher during the warmer season, reaching 2.08?±?1.07 μg/m3 and 2.32?±?0.94 μg/m3 in April and July, respectively, while only 1.68?±?0.61 μg/m3 in March and 1.24?±?0.99 μg/m3 in September. It is proposed that the higher availability of acid species during the warmer months produced a significant amount of particulate ammonium sulfate. Diurnal fluctuation of ammonia and ammonium during the warmer months showed that their peak time occurred at approximately 10:00 am. Both ammonia and ammonium concentrations were better correlated during the warmer months than during the cooler months. Further, the data suggest that the ammonia and ammonium were measured under well dispersed conditions, and multiple sources contributed to the ammonia at the sampling site.  相似文献   

14.
Atmospheric water vapour is treated as an equilibrium mixture of gas-phase water clusters, (H2O) i , using recent precise quantum-chemical data on these species. It is shown that within a typical atmospheric temperature/humidity profile, the cluster populations in the Earth's atmosphere decrease with increasing height, being of the order of magnitude of 0.1 mg/m3 and 0.1 g/m3 for the water dimer and trimer, respectively, in the atmospheric pressure region of 700–800 mb.Dedicated to the 50th anniversary of the preparation of the first artificial snow crystal by Prof. Ukitiro Nakaya at the Hokkaido University on 12 March, 1936 (see, e.g., Nakaya et al. (1938)).  相似文献   

15.
Black carbon (BC) mass concentration variation has been studied, over a period of 2 years (June 2010–May 2012) at Bhubaneswar. Daily, monthly and seasonal measurements revealed a clear winter maxima (5.6 μg/m3) of BC followed by post-monsoon (4.05 μg/m3), monsoon (3.02 μg/m3) and pre-monsoon (2.46 μg/m3). Nighttime BC mass concentrations have been found to be distinctly higher during winter followed by post-monsoon and monsoon. Investigations reveal that the winter maxima are due to a stable atmospheric condition and long-range transport over the Indo-Gangetic Plain and Western Asia. Local boundary layer dynamics and anthropogenic activities have been assumed to have a pronounced effect on the diurnal cycle seasonally. Statistical analysis suggests significant variation of BC during the months and non-significant during the days. The study also gives an insight into importance of BC study from health angle and suggests an assessment and management framework. Source apportionment study suggests that BC mass concentration observed at Bhubaneswar is generally dominated by fossil fuel combustion.  相似文献   

16.
The results of research of diurnal and seasonal dynamics of CO2 emission from the oligotrophic swamp surface in the southern taiga subzone of Western Siberia in 2005–2007 are under consideration. During the summertime, the intensity of CO2 emission increases from spring to the midsummer and then decreases by the fall. A mean CO2 emission value was 118 mg CO2/(m2 hour). The analysis of diurnal dynamics of CO2 emission showed that the maximum CO2 flux is observed at 16:00, while the minimum, at 07:00. Mean amplitude of diurnal variations of the CO2 emission is 74 mg CO2/(m2 hour). The relations established between air temperature and CO2 flux allowed calculating carbon dioxide emission for the periods between measurements. It was found that in the summertime, the period between 10:00 and 13:00 was optimal for measuring CO2 emission with a chamber method.  相似文献   

17.
This study elucidates the characteristics of ambient PM2.5 (fine) and PM1 (submicron) samples collected between July 2009 and June 2010 in Raipur, India, in terms of water soluble ions, i.e. Na+, NH 4 + , K+, Mg2+, Ca2+, Cl?, NO 3 ? and SO 4 2? . The total number of PM2.5 and PM1 samples collected with eight stage cascade impactor was 120. Annual mean concentrations of PM2.5 and PM1 were 150.9?±?78.6 μg/m3 and 72.5?±?39.0 μg/m3, respectively. The higher particulate matter (PM) mass concentrations during the winter season are essentially due to the increase of biomass burning and temperature inversion. Out of above 8 ions, the most abundant ions were SO 4 2? , NO 3 ? and NH 4 + for both PM2.5 and PM1 aerosols; their average concentrations were 7.86?±?5.86 μg/m3, 3.12?±?2.63 μg/m3 and 1.94?±?1.28 μg/m3 for PM2.5, and 5.61?±?3.79 μg/m3, 1.81?±?1.21 μg/m3 and 1.26?±?0.88 μg/m3 for PM1, respectively. The major secondary species SO 4 2? , NO 3 ? and NH 4 + accounted for 5.81%, 1.88% and 1.40% of the total mass of PM2.5 and 11.10%, 2.68%, and 2.48% of the total mass of PM1, respectively. The source identification was conducted for the ionic species in PM2.5 and PM1 aerosols. The results are discussed by the way of correlations and principal component analysis. Spearman correlation indicated that Cl? and K+ in PM2.5 and PM1 can be originated from similar type of sources. Principal component analysis reveals that there are two major sources (anthropogenic and natural such as soil derived particles) for PM2.5 and PM1 fractions.  相似文献   

18.
A cloud-detection algorithm for METEOSAT first generation data has been developed. The algorithm utilizes solely infrared data from the METEOSAT thermal infrared window channel at around 11.5 μm. The developed algorithm estimates an assumed clear-sky brightness temperature from time series analysis on pixel bases. Land-/sea-depending dynamic thresholds are then utilized discriminating the infrared images in cloudy, undecided, and cloud free pixels. The cloud-detection algorithm has been validated against synoptic observations. The developed cloud-detection scheme has been applied to 10 years (1992–2001) of METEOSAT data, extracting cloud coverage statistics for the Baltic Sea catchment area. These have been compared to corresponding cloud coverage statistics derived from the BALTIMOS coupled model system. Building overall averaged values of the cloud coverage in the period from 1999 to 2001 gives results with very good agreement between simulation and observation: the total METEOSAT-derived cloud coverage amounts to 0.65 compared to 0.63 for BALTIMOS. In contrast, large discrepancies in the phase of the diurnal cycle of cloud coverage have been observed. A significant trend in total cloud amount was observed neither from the model nor from the satellite.  相似文献   

19.
通过446183条全球晴空大气廓线的红外辐射传输模拟和统计回归,建立了由Himawari08成像仪通道遥测数据估算晴空地表上行、下行长波辐射通量的反演模式,模式应用于成像仪观测资料,处理出晴空地表上行、下行长波辐射通量实时产品,2016年2~6月的产品精度验证试验结果为:与相同时刻的AQUA卫星CERES仪器同类产品相比,地表上行通量均方根误差Re=7.9 W/m2,相关系数R=0.9399,地表下行通量Re=14.5 W/m2,R=0.9586;与由中国地面气象站地面气温和相对湿度观测经Brunt、Brutsaert经验公式计算的实时地表下行长波辐射通量相比,Re=15.34 W/m2,R=0.8786;与用陆表温度计算的地表上行长波辐射通量相比,Re=12.6 W/m2,R=0.9977。研究了2016年2、6月的晴空地表长波辐射产品,发现陆地晴空上、下行通量有着与太阳加热地表增温相应的明显日变化特征,峰值出现在12:00(当地时间,下同)至14:00,低谷出现在04:00至07:00,下行通量与上行通量几乎同步变化或约有延时,陆地上2个通量归一化的日变化指数类似一个半正弦曲线,而海面长波辐射通量则没有明显的日变化规律。  相似文献   

20.
Ocean emissions of inorganic and organic iodine compounds drive the biogeochemical cycle of iodine and produce reactive ozone-destroying iodine radicals that influence the oxidizing capacity of the atmosphere. Di-iodomethane (CH2I2) and chloro-iodomethane (CH2ICl) are the two most important organic iodine precursors in the marine boundary layer. Ship-borne measurements made during the TORERO (Tropical Ocean tRoposphere Exchange of Reactive halogens and Oxygenated VOC) field campaign in the east tropical Pacific Ocean in January/February 2012 revealed strong diurnal cycles of CH2I2 and CH2ICl in air and of CH2I2 in seawater. Both compounds are known to undergo rapid photolysis during the day, but models assume no night-time atmospheric losses. Surprisingly, the diurnal cycle of CH2I2 was lower in amplitude than that of CH2ICl, despite its faster photolysis rate. We speculate that night-time loss of CH2I2 occurs due to reaction with NO3 radicals. Indirect results from a laboratory study under ambient atmospheric boundary layer conditions indicate a k CH2I2+NO3 of ≤4 × 10?13 cm3 molecule?1 s?1; a previous kinetic study carried out at ≤100 Torr found k CH2I2+NO3 of 4 × 10?13 cm3 molecule?1 s?1. Using the 1-dimensional atmospheric THAMO model driven by sea-air fluxes calculated from the seawater and air measurements (averaging 1.8 +/? 0.8 nmol m?2 d?1 for CH2I2 and 3.7 +/? 0.8 nmol m?2 d?1 for CH2ICl), we show that the model overestimates night-time CH2I2 by >60 % but reaches good agreement with the measurements when the CH2I2 + NO3 reaction is included at 2–4 × 10?13 cm3 molecule?1 s?1. We conclude that the reaction has a significant effect on CH2I2 and helps reconcile observed and modeled concentrations. We recommend further direct measurements of this reaction under atmospheric conditions, including of product branching ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号