首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
The dependence of the turbulent airflow over water waves on the angle,, between mean wind and wavedirections is investigated. To this end,an existing semi-analytical model is extended. In this model, the main simplification of the problem is obtained by using the well-established divisionof the wave boundary layer into inner and outer regions for modelling turbulence. The effect of waves on turbulence is restricted to the thin inner region. Simulations show that the influence of the wind speed component transverse to the wave direction on the air flow, and hence on the growth rate of the waves, is small. This is confirmed by calculations with a numerical model that solves the full Reynolds equations using a second-order turbulence closure scheme. The growth rate of slowly moving waves (as compared to the wind speed) is then proportional to cos2, whereas, for faster waves, it has a narrower angular distribution.  相似文献   

2.
A nonlinear numerical model is developed for turbulent boundary-layer flowover a train of water waves of finite amplitude or slope. The airflow isassumed to be steady, two-dimensional, and neutrally-stratified. The wavesurface is assumed to be aerodynamically rough and flow conditions at thewave surface are prescribed. The numerical model used in this study adoptsthree turbulence closure schemes with different degrees of physicalcompleteness. Two of these are second-order schemes, whichare believed to describe turbulent flow more completely than thesimpler closures used in most previous studies. Although models with all turbulence closures agree qualitatively in the prediction of the amplitude of the surface normal stress perturbation, the lower- and higher-order closures differ significantly in predictions of phase, and hence the form drag and energy transfer rate between wind and waves. Our model results are in reasonable agreement with field and laboratory measurements, although predicted energy transfer rates are generally at the low end of the range of experimental values. Cases with airflow at various angles to the wave direction are also considered.  相似文献   

3.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   

4.
Computations of the buoyantly unstable Ekman layer are performed at low Reynolds number. The turbulent fields are obtained directly by solving the three-dimensional time-dependent Navier-Stokes equations (using the Boussinesq approximation to account for buoyancy effects), and no turbulence model is needed. Two levels of heating are considered, one quite vigorous, the other more moderate. Statistics for the vigorously heated case are found to agree reasonably well with laboratory, field, and large-eddy simulation results, when Deardorff's mixed-layer scaling is used. No indication of large-scale longitudinal roll cells is found in this convection-dominated flow, for which the inversion height to Obukhov length scale ratio –z i /L *=26. However, when heating is more moderate (so that –z i /L *=2), evidence of coherent rolls is present. About 10% of the total turbulent kinetic energy and turbulent heat flux, and 20% of the Reynolds shear stress, are estimated to be a direct consequence of the observed cells.  相似文献   

5.
A new method for obtaining instantaneous vertical profiles of two components of velocity and temperature in thermally stratified turbulent shear flows is presented. In this report, the design and construction of the traversing system will be discussed and results to date will be presented. The method is based on rapid vertical sampling whereby probe sensors are moved vertically at a high speed such that the measurement is approximately instantaneous. The system is designed to collect many measurements for the calculation of statistics such as vertical wave number spectra, mean square vertical gradients, and Thorpe scales. Results are presented for vertical profiles of temperature and compared to vertical profiles measured by single-point Eulerian time averages. The quality of the vertical profiles is found to be good over many profiles. Some comparisons are made between vertical measurements and standard single-point Eulerian measurements for three cases of stably stratified turbulent shear flow in which the initial microscale Reynolds number, Reλ≈30. In case 1, the mean conditions are characterized by a gradient Richardson number, Rig=0.015, for which the flow is “unstable”, meaning the spatially evolving turbulent kinetic energy (Ek) grows. In case 2, Rig=0.095, for which the evolving turbulent kinetic energy is almost constant. In case 3, the flow is highly stable, where Rig=0.25 and Ek decays with spatial evolution. The measurements indicate anisotropy in the small scales for all cases. In particular, it is found that the ratio grows initially to a maximum and then decays with further evolution. Maximum Thorpe displacements are measured and compared to single-point measures of the vertical scales. It is found that vertical length scales derived from single-point measurements, such as the Ozmidov scale, LO=(ε/N3)1/2 and the overturn scale, Lt=θ′/(dT/dz), do not represent well the wide range of overturning scales which are actually present in the turbulence.  相似文献   

6.
Using time series measurements of velocity, carbon dioxideand water vapour concentration, and temperature collected justabove a 15 m tall even-aged pine forest, we quantify the roleof organized motion on scalar and momentum transport withinthe nocturnal canopy sublayer (CSL). We propose a frameworkin which the nocturnal CSL has two end-members, bothdominated by organised motion. These end-members representfully developed turbulent flows at near-neutral or slightly stablestratification and no turbulence for very stable stratification.Our analysis suggests that ramps dominate scalar transport fornear-neutral and slightly stable conditions, while linear canopywaves dominate the flow dynamics for very stable conditions.For intermediate stability, the turbulence is highly damped andoften dominated by fine scale motions. Co-spectral analysissuggests that ramps are the most efficient net scalar mass-transportingagent while linear canopy waves contribute little to net scalartransport between the canopy and atmosphere for averagingintervals that include complete wave cycles. However, canopywaves significantly contribute to the spectral properties of thescalar time series. Ramps are the most frequently occurringorganised motion in the nocturnal CSL for this site.Numerous night-time runs, however, resided between thesetwo end-members. Our analysis suggests that whenradiative perturbations are sufficient large (>20 W m-2 innet radiation), the flow can switch from being highly dampedfine-scale turbulence to being organized with ramp-like properties. We also found that when ramps are already the dominant eddymotion in the nocturnal CSL, radiative perturbations have aminor impact on scalar transport. Finally, in agreement withprevious studies, we found that ramps and canopy waves havecomparable length scales of about 30–60 metres. Consequencesto night-time flux averaging are also discussed.  相似文献   

7.
Aircraft, surface, upper air and satellite measurements have been used to observe the evolution and growth of the convective Marine Atmospheric Boundary Layer (MABL) offshore of North Carolina in close proximity to the Gulf Stream, during the intense cold air outbreak of 28 January 1986 and the moderate event of 12 February 1986, as part of the Genesis of Atlantic Lows Experiment (GALE). Air mass modification processes, driven primarily by the ocean-atmosphere exchanges of surface turbulent sensible and latent heat fluxes, caused the overlying air mass to warm and moisten as it advected over the warmer waters of the eastern United States continental shelf. Maximum observed near-surface total heat fluxes were 1045 and 811 W·m–2 over the core of the Gulf Stream, for 28 January and 12 February 1986, respectively. The observed changes in the overlying air mass occurred almost instantaneously as the ambient flow traversed different underlying SST conditions.The turbulent structure showed a buoyancy-dominated MABL below approximately 0.8z/h. However, shear was also observed to be an important production term above 0.8z/h and below 0.1z/h for the 28 January 1986 event. Dissipation of turbulent kinetic energy was the dominant destruction term in the budgets, but vertical transport of energy was a strong contributor below 0.5z/h, above which this term became a source of turbulent energy. Additionally, the normalized standard deviations of the horizontal velocity components showed a near-equal contribution to the turbulence, while the vertical velocity components displayed the characteristic mid-layer maximum profile observed for a convective, well-mixed boundary layer.  相似文献   

8.
An analytical model is developed for the initial stage of surface wave generation at an air–water interface by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion, essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445], but the pressure fluctuations that generate the waves are treated as unsteady and related to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a constant mean shear rate Γ, can be viewed as the simplest representation of an oceanic or atmospheric boundary layer.For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the waves generated by turbulence in the water are found to be considerably steeper than those generated by turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent pressure in the air (estimated as  1/Γ), because of the higher shear rate existing in the air flow, and due to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence in the air. Hence, it is suggested that turbulence in the water may have a more important role than previously thought in the initiation of the surface waves that are subsequently amplified by feedback instability mechanisms.  相似文献   

9.

The nocturnal low-level jet (LLJ) and orographic (gravity) waves play an important role in the generation of turbulence and pollutant dispersion and can affect the energy production by wind turbines. Additionally, gravity waves have an influence on the local mixing and turbulence within the surface layer and the vertical flux of mass into the lower atmosphere. On 25 September 2017, during a field campaign, a persistent easterly LLJ and gravity waves were observed simultaneously in a coastal area in the north of France. We explore the variability of the wind speed, turbulent eddies, and turbulence kinetic energy in the time–frequency and space domain using an ultrasonic anemometer and a scanning wind lidar. The results reveal a significant enhancement of the turbulence-kinetic-energy dissipation (by?50%) due to gravity waves in the LLJ shear layer (below the jet core) during the period of wave propagation. Large magnitudes of zonal and vertical components of the shear stress (approximately 0.4 and 1.5 m2 s?2, respectively) are found during that period. Large eddies (scales of 110 to 280 m) matching the high-wind-speed regime are found to propagate the momentum downwards, which enhances the mass transport from the LLJ shear layer to the roughness layer. Furthermore, these large-scale eddies are associated with the crests while comparatively small-scale eddies are associated with the troughs of the gravity wave.

  相似文献   

10.
Within the framework of the semiempirical theory of turbulence for stratified fluids some aspects of the problem of internal wave-turbulence interaction in the upper layer of the ocean are discussed. The conditions of amplification and sustaining of turbulence by internal waves are investigated. Stationary distributions of turbulent energy are found for a stratified fluid with a shear flow produced, for example, by a low-frequency internal wave. The internal wave damping due to both turbulent viscosity and turbulent diffusion in the thermocline is studied. For a two-layer model damping constant is determined as a function of the wave number. The variation of surface turbulence by internal waves is estimated and the role of this process in slick formation is considered.  相似文献   

11.
While turbulent bursts are considered critical for blowing-snow transport and initiation, the interaction of the airflow with the snow surface is not fully understood. To better characterize the coupling of turbulent structures and blowing-snow transport, observations collected in natural environments at the necessary high-resolution time scales are needed. To address this, high-frequency measurements of turbulence, blowing-snow density and particle velocity were made in the Canadian Rockies. During blowing-snow storms, modified variable-interval time averaging enabled identification of periods of near-surface blowing-snow coupling with shear-stress-producing motions in the lowest 2 m of the atmospheric surface layer. The identification of those turbulent motions responsible for blowing snow yields a better understanding of the event-driven mechanics of initiation and sustained transport. The type of coherent structures generating the Reynolds stress are just as important as the magnitude of the Reynolds stress in initiating and sustaining near-surface blowing snow. Our results suggest that blowing-snow models driven by merely the time-averaged shear stress lack physical realism in the near-surface region. The next phase of the development of blowing-snow models should incorporate parametrizations of coherent turbulent structures.  相似文献   

12.
We show the relationship between the intermittency of turbulence and the type of stratification for different atmospheric situations during the SABLES98 field campaign. With this objective, we first demonstrate the scaling behaviour of the velocity structure functions corresponding to these situations; next, we analyze the curvature of the scaling exponents of the velocity structure functions versus the order of these functions (ζ p vs. p), where ζ p are the exponents of the power relation for the velocity structure function with respect to the scale. It can be proved that this curve must be concave, under the assumption that the incompressible approximation does not break down at high Reynolds numbers. The physical significance of this kind of curvature is that the energy dissipation rate increases as the scale of the turbulent eddies diminishes (intermittency in the usual sense). However, the constraints imposed by stability, preventing full development of the turbulence, allow the function ζ p versus p to show any type of curvature. In this case, waves of high frequency trapped by the stability, or bursts of turbulence caused by the breaking up of internal waves, may produce a redistribution of energy throughout the scaling range. Due to this redistribution, the variation with the scale of the energy dissipation rate may be smaller (decreasing the intermittency) and, even in more stable situations, this rate may diminish (instead of increasing) as the scale diminishes (convex form of the curve ζ p vs. p).  相似文献   

13.
Atmospheric cyclones with strong winds significantly impact ocean circulation, regional sea surface temperature, and deep water formation across the global oceans. Thus they are expected to play a key role in a variety of energy transport mechanisms. Even though wind-generated internal gravity waves are thought to contribute significantly to the energy balance of the deep ocean, their excitation mechanisms are only partly understood.The present study investigates the generation of internal gravity waves during a geostrophic adjustment process in a Boussinesq model with axisymmetric geometry. The atmospheric disturbance is set by an idealized pulse of cyclonic wind stress with a Rankine vortex structure. Strength, radius and duration of the forcing are varied. The effect upon wave generation of stratification with variable mixed-layer depth is also examined.Results indicate that internal gravity waves are generated after approximately one inertial period. The outward radial energy flux is dominated by waves having structure close to vertical mode-1 and with frequency close to the inertial frequency. Less energetic higher mode waves are observed to be generated close to the sea floor underneath the storm. The total radiated energy corresponds to approximately 0.02% of the wind input. Deeper mixed-layer conditions as well as weaker stratification reduce this fraction.The low energy transfer rates suggest that other processes that drive vertical motion like surface heat fluxes, turbulent motion, mixed region collapse and storm translation are essential for significant energy extraction by internal gravity waves to occur.  相似文献   

14.
Downward fluxes of turbulent kinetic energy have been frequently observed in the air layer just above plant canopies. In order to investigate the mechanism for such downward transport, analysis of observational data is attempted. Height-dependency of turbulent kinetic energy flux and turbulence statistics including higher order moments is represented as a function of a non-dimensional height z/H, where z is an observational height and H an average height of plant canopies. Downward fluxes and non-Gaussianity of wind velocity fluctuations are predominant just above plant canopies and decrease with increasing height. The downward flux is closely related to the high intensity of turbulence and the non-Gaussianity of wind velocity fluctuations, especially with a positive skewness in the longitudinal wind and a negative skewness in the vertical wind. The analysis method of conditional sampling and averaging is applied to the present observations. The results show that the predominance of the intermittent inrush phase over the intermittent ejection phase leads to the above-mentioned non-Gaussianity. Finally, a simple explanation is given in order to interpret the turbulent flow structure in the air layer near the plant canopies, which is associated with the downward energy transport process.  相似文献   

15.
植被内部及其上方湍流场的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
尹协远  J.D.Lin 《气象学报》1988,46(2):194-201
植被内部及其上方的湍流流场对于了解植被与大气之间的动量、热量和质量交换过程极其重要。本文把高阶湍流封闭模型的Reynolds应力方程模型(RSM)应用于植被湍流的计算,得到了风速、湍流动能、Reynolds应力及能量耗散率的垂直分布,与现场观测数据比较,甚为满意。  相似文献   

16.
Simulating turbulent flows in a city of many thousands of buildings using general high-resolution microscopic simulations requires a grid number that is beyond present computer resources. We thus regard a city as porous media and divide the whole hybrid domain into a porous city region and a clear fluid region, which are represented by a macroscopic k–e{\varepsilon} model. Some microscopic information is neglected by the volume-averaging technique in the porous city to reduce the calculation load. A single domain approach is used to account for the interface conditions. We investigated the turbulent airflow through aligned cube arrays (with 7, 14 or 21 rows). The building height H, the street width W, and the building width B are the same (0.15 m), and the fraction of the volume occupied by fluid (i.e. the porosity) is 0.75; the approaching flow is parallel to the main streets. There are both microscopic and macroscopic simulations, with microscopic simulations being well validated by experimental data. We analysed microscopic wind conditions and the ventilation capacity in such cube arrays, and then calculated macroscopic time-averaged properties to provide a comparison for macroscopic simulations. We found that the macroscopic k–e{\varepsilon} turbulence model predicted the macroscopic flow reduction through porous cube clusters relatively well, but under-predicted the macroscopic turbulent kinetic energy (TKE) near the windward edge of the porous region. For a sufficiently long porous cube array, macroscopic flow quantities maintain constant conditions in a fully developed region.  相似文献   

17.
Miles' inviscid theory of surface wave generation by wind is (a) modified by replacing the logarithmic shear velocity profile with one which applies right down to the wave surface and which exhibits an explicit dependence on the roughness of the surface, and (b) extended to include the effects of the interaction of wave with air flow turbulence by considering the wave-modified mean flow as the mean of the actual turbulent air flow over water waves and using this in a mixing-length model.The surface pressure is shown to depend significantly on the flow conditions being aerodynamically smooth or rough. Its component in phase with the surface elevation is practically unaffected by the wave-turbulence interaction. However, such interaction tends to increase the rate of energy input ß from wind to waves travelling in the same direction, e.g., the increase is 2gk 2 for aerodynamically rough flow, where gk is the Von Karman constant. It also provides damping of waves in an adverse wind which can be about 10% of the growth rate in a favourable wind.  相似文献   

18.
The structure of supercritical western boundary currents is investigated using a quasi-geostrophic numerical model. The basic flow is of meridional Munk balance, and the input boundary is perturbed by the most unstable wave solution obtained from linear spatial instability calculations. Self-preserving (or equilibrium) solutions are obtained for the model runs at Re=30, 60, 90, and 120, and their energy and vorticity budgets are analyzed. In an analogy with the laboratory turbulence of wall boundary layers, the western boundary layer is divided into inner and outer layers. In the inner layer, the mean energy is dissipated via direct viscous dissipation, while in the outer layer it is converted to the eddy energy via turbulence production. The main scenario is that the mean energy is produced in the inner layer via ageostrophic pressure work divergence, and it is partly removed due to viscous action within a narrow region near the wall, defined here as viscous sub-layer. The remaining portion is converted to the eddy energy via turbulence production in the outer layer, which is in turn transported to the inner layer, then again to the viscous sub-layer where it is ultimately dissipated. In the near-wall side, the vorticity balance of the mean flow is maintained by viscous effect and Reynolds flux divergence, while in the offshore side it is maintained by beta effect and Reynolds flux divergence. The length scale of the supercritical boundary current is roughly , where LM is the Munk length, as observed from a dimensional analysis.  相似文献   

19.
In this paper, some aspects of dispersion of air pollutants as emitted from aircraft in the lower stratosphere have been investigated. As this part of the atmosphere is always stably stratified, mixing as a result of small-scale turbulence is very slow. Instead, effective vertical mixing can be provided by breaking gravity waves. We have examined the mixing properties of those events by means of a numerical model, which simulates the wave development as well as the dispersion of passive trace substances. From these simulations, an effective diffusion coefficient for the entire event of a breaking gravity wave of about 0.7 m2 s−1 was calculated.  相似文献   

20.
For the first time, results from a high-resolution numerical simulation (with horizontal grid spacing of 35m) were used to reveal the detailed structure near an atmospheric katabatic jump over an idealized slope. The simulation represents flow over the slopes of Coats Land, Antarctica for austral winter conditions. The katabatic jump is characterised by an updraft with vertical velocities of order 1ms−1 and serves as a possible forcing mechanism for the gravity waves frequently observed over the ice shelves around the Antarctic. Results also indicate that strong turbulence is generally confined within a mixing zone near the top of the katabatic layer upstream of the jump and extends downstream through the top of the strong updraft associated with the jump. Detailed analyses of momentum and heat budgets across the katabatic jump indicate that, upstream of the jump, turbulent mixing is important in decelerating the upper part of the katabatic layer, while within the jump the upslope pressure gradient force associated with the pool of cold air plays a role in decelerating the flow near the surface. The heat budget near the jump reveals a simple two-term balance: the turbulent heat flux divergence is balanced by the advection. A comparison of model results with available theories indicates that mixing between layers of different potential temperature structure indeed plays some role in the development of katabatic flow jumps, especially for strong jumps. Theories used to study katabatic jumps should include this mixing process, of which the amount depends on the intensity of the jump. A conceptual model of a katabatic jump, including the main dynamical processes, is constructed from these detailed analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号