首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
利用2018年12月—2019年2月Himawari-8卫星气溶胶光学厚度数据产品与河南省119个国家地面观测站能见度观测资料,建立线性混合效应模型,并基于卫星观测AOD数据反演了河南省地面能见度。结果表明:Himawari-8卫星的AOD产品与Aqua的AOD产品一致性较好。线性混合效应模型反演的地面能见度与台站观测的能见度相关性可以达到082(P<005),反演的能见度均值与观测能见度均值仅相差05 km。通过2018年12月16日14时个例分析,能见度的分布与地面观测基本保持一致,反演的地面能见度空间分辨率达到2 km。  相似文献   

2.
对FY-4A卫星的气溶胶光学厚度(AOD)产品进行检验,并根据卫星相关观测资料,通过改进后的PMRS方法,反演得到中国近地面PM2.5质量浓度网格化分布。结果表明,FY-4A卫星反演不同站点AOD与地基观测网(AERONET)观测结果吻合较好,但存在一定的低估或高估现象,相关系数区间为0.54—0.87。将细粒子比(FMF)以0.4为界进行划分,FMF>0.4时,拟合结果较FMF≤0.4时更接近于AERONET观测结果;但FMF≤0.4时,卫星反演的AOD稳定性优于FMF>0.4时。通过引入AOD的大小,改进FMF>0.4时对细粒子柱状体积消光比(VEf)的估算算法,并通过改进后的PMRS方法对中国近地面PM2.5浓度进行逐时反演,其反演结果和地面观测结果相关较好,其中,乌鲁木齐、石家庄和徐州观测点的相关系数均高于0.7,但数值上仍存在高估或低估,误差结果由多种因素决定。空间分布中,卫星反演的中国2019年近地面PM2.5浓度月均值与近地面观测的结果有较好的对应关系,二者逐月演变趋势基本一致,基本可以反映出中国近地面大气细粒子的空间分布,特别是秋、冬季京津冀周边区域、汾渭平原等污染高值区均与地面观测对应较好。   相似文献   

3.
利用静止卫星MTSAT反演大气气溶胶光学厚度   总被引:10,自引:1,他引:9  
卫星遥感是获取气溶胶光学特性的重要手段,利用静止卫星可见光通道资料反演气溶胶光学厚度(AOD)的算法使用日本静止气象卫星MTSAT可见光通道资料反演了2008年5月中国地区陆地上的气溶胶光学厚度,将得到的结果分别与AERONET站点的地面观测值进行比较,得到了较好的线性相关关系,再将其与相应的MODIS气溶胶光学厚度产品进行比较,也得到了较为一致的分布,表明MTSAT反演的气溶胶光学厚度产品可以反映大气气溶胶光学厚度的日变化信息。最后对这种反演算法的误差来源进行了分析。  相似文献   

4.
准确获取气溶胶光学厚度对于气候变化研究和大气环境监测具有重要意义。通过波长插值和时空匹配方法,利用气溶胶自动观测站网(AERONET)观测的气溶胶光学厚度(AOD)对风云3A/中分辨率光谱成像仪(FY-3A/MERSI)、Terra(Aqua)/MODIS的C5.1(Collections 5.1)和C6(Collections 6)气溶胶光学厚度产品在中国区域的反演精度进行验证分析。结合一次发生在中国境内的沙尘天气与一次严重雾霾天气个例,分析上述卫星气溶胶光学厚度的分布特征。研究结果表明,(1)FY-3A/MERSI AOD的反演精度较高(R=0.887,RMSE=0.234),其值低于AERONET的观测值(Bias=-0.293)。(2)在不同的下垫面下,各种卫星暗像元算法AOD产品反演精度有差异,植被覆盖情况越好,反演精度越高,而植被很少的地区,即亮地表甚至没有反演值。(3)MODIS C5.1深蓝算法产品能在亮地表地区反演AOD,但效果不佳。MODIS C6中的深蓝算法产品在不同下垫面的反演精度都很高(RMSE为0.096-0.127)。(4)在不同季节的对比中,各种卫星AOD产品在夏季的反演精度最差,而反演最好的季节各有不同。(5)在一次沙尘天气污染与一次严重雾霾天气个例中,中国西部与北部区域,MODIS C6深蓝算法AOD的监测效果优于其他算法AOD;MERSI AOD产品在此区域的分布不连续。总体而言,MODIS C6 AOD分布比MODIS C5.1产品连续,MODIS 3 km产品在相同区域的AOD值高于其他产品。以上结论可为卫星AOD产品在中国区域的使用提供参考。   相似文献   

5.
一种反演气溶胶光学厚度的改进方法   总被引:1,自引:0,他引:1       下载免费PDF全文
该文提出了一种简单快速反演气溶胶光学厚度的方法,该算法对地表反照率的处理与MODIS V5.2算法相同,但气溶胶谱分布假定为Junge谱,设置了新的气溶胶参数。应用2006年9月6日—2008年6月10日太湖MODIS观测资料和2008年5月20日—2009年7月6日香河MODIS观测资料进行反演,并将反演结果与AERONET (AErosol RObotic NETwork) 站点资料进行对比,以检验算法的适用性和精度。对比结果显示:该算法在太湖的反演结果与AERONET太湖站反演结果对比的标准偏差为0.429,而MODIS卫星AOD产品与AERONET太湖站反演结果对比的标准偏差为0.693;相应在香河的两种反演结果与地面观测对比的标准偏差分别为0.493和0.542。该算法的反演误差小于MODIS现行算法,反演结果合理,具有较好的适用性,说明这种方法在这两个区域具有更高的反演精度。  相似文献   

6.
京津冀地区气溶胶光学厚度反演及其空间分布特征   总被引:1,自引:0,他引:1  
利用2014年9月1日至2015年5月31日Terra/MODIS MOD 021KM数据,以京津冀地区为研究区域,采用深蓝算法和查找表法反演京津冀地区1 km分辨率的气溶胶光学厚度,并将反演的气溶胶光学厚度与NASA产品和CE-318观测的气溶胶光学厚度进行比较。结果表明:反演的气溶胶光学厚度与NASA MOD 04_L2(10 km×10 km)和MOD 04_3K(3 km×3 km)两种气溶胶产品的空间分布具有高度的一致性,且空间分辨率更高;反演的气溶胶光学厚度与石家庄站CE-318观测气溶胶光学厚度的平均绝对误差为0.07左右,二者之间的相关系数R~2=0.956。卫星过境时,1 km反演的气溶胶光学厚度与MOD 04_L2气溶胶产品的平均误差约为0.06,反演的气溶胶光学厚度与MOD 04_3K气溶胶产品的平均误差约为0.03。对反演的气溶胶光学厚度与河北省PM_(2.5)和PM_(10)质量浓度的空间分布进行相关性分析表明,气溶胶光学厚度AOD与PM_(2.5)和PM_(10)质量浓度的相关系数分别为0.745、0.663,说明1 km反演的AOD可以有效反映区域PM_(2.5)和PM_(10)质量浓度的空间分布。  相似文献   

7.
中国区域MODIS陆上气溶胶光学厚度产品检验   总被引:15,自引:2,他引:13       下载免费PDF全文
以我国MODIS共享网站积累的MODIS L1B数据和美国威斯康辛大学提供的IMAPP软件包气溶胶产品软件为基础, 经过产品运行本地化改进处理, 在国家卫星气象中心建立了气溶胶产品业务化生成和发布机制。为支持气溶胶遥感产品算法改进以及潜在用户对产品的合理应用, 给出对国家卫星气象中心运行的MODIS气溶胶遥感产品质量检验分析结果。利用2005年1月— 2007年5月AERONET地基气溶胶监测网的L2.0级气溶胶光学厚度产品作为真值, 用它匹配MODIS陆上气溶胶光学厚度产品开展检验。检验结果表明:以卫星过境前后30min地基观测时间平均值匹配地基站点位置10 km半径范围内的卫星反演结果空间平均值开展检验, 总体样本的气溶胶光学厚度均方根误差约为0.25;满足产品误差要求 (±0.05±0.20τ) 的样本占总样本数的44%; 气溶胶光学厚度反演结果精度具有季节和地域差异, 干季(秋、冬、春)的气溶胶光学厚度误差较小, 而雨季气溶胶光学厚度误差较大, 云是雨季气溶胶光学厚度反演结果误差较大的主要影响因素。  相似文献   

8.
利用2010—2012年间中国西北地区敦煌、民勤和塔中3个站点的CE-318太阳光度计观测资料,反演获得了气溶胶440 nm波段的大气气溶胶光学厚度(AOD)及440—870 nm波长指数(Alpha),同时结合Moderate Resolution Imaging Spectroradiometer(MODIS)卫星L1B产品及环境颗粒物监测仪Tapered Element Oscillating Microbalance(TEOM)观测的PM10数据,挑选出2010—2012年间沙尘天气特征明显的6个日期,并对这6天的气溶胶光学特性、PM10浓度变化特征及沙尘气溶胶来源进行了分析。研究结果表明:MODIS卫星图有明显沙尘天气过境时,当天的AOD值较高,Alpha值则较低,且AOD和Alpha表现出相反的变化趋势。这表明在这3个站点沙尘气溶胶占主导,PM10浓度变化与AOD变化趋势有较好的正相关性。Hybrid Single Particle Lagrangian Integrated Trajectory(HYSPLIT)后向轨迹分析表明,气团大多起源于塔克拉玛干沙漠或干旱、半干旱区。  相似文献   

9.
陈艳  张武  张利  柳月  宋松涛 《干旱气象》2013,(3):517-522
利用全球自动观测网(AERONET)纳木错观测点(90.962°E,30.773°N)2009年1~12月的地基观测数据,对青藏高原中部气溶胶光学厚度的分布进行了分析研究,并利用观测结果对MODIS气溶胶光学厚度(AOD)产品进行检验。结果表明,2009年1~12月期间,气溶胶光学厚度月平均值呈现双峰双谷状分布,3月的值最大。9月以后的波长指数a较小,这一时期气溶胶粒子的粒径较大。混浊系数卢的平均值为0.063,说明该地区的空气较为清洁。利用该地基观测资料对MODISAOD产品进行检验,结果表明两者的相关系数平方为0.14,没有通过95%的置信度检验,适用性不显著,需要进一步订正该地区的MODIS气溶胶光学厚度产品。  相似文献   

10.
MODIS遥感中国近海气溶胶光学厚度的检验分析   总被引:16,自引:0,他引:16  
基于中分辨率成像光谱仪(TERRA/MODIS)的一级数据和相应的辅助数据,利用MODIS/ARIS预处理软件包(IMAPP)中的气溶胶软件反演得到中国近海气溶胶的光学厚度,与AERONET太阳光度计的反演结果作对比分析,验证了此反演方法的可行性.研究了2002年10-11月中国近海气溶胶光学厚度和Angstrom指数(表征粒子谱宽度)的变化特征,进一步结合气块后向轨迹分析和地理环境背景场信息讨论了卫星反演气溶胶光学参量的适用范围和误差来源,结果表明:IMAPP反演得到的气溶胶光学厚度,在东海和日本以南等广阔海域与气溶胶地基观测网(AERONET)的观测结果基本一致;在渤海和黄海近海岸一带反演值偏高,其主要原因是该海域存在二类水体的影响.  相似文献   

11.
The Moderate Resolution Imaging Spectroradiometer(MODIS) sensor onboard NASA's Aqua satellite has been collecting valuable data about the Earth system for more than 14 years, and one of the benefits of this is that it has made it possible to detect the long-term variation in aerosol loading across the globe. However, the long-term aerosol optical depth(AOD)trends derived from MODIS need careful validation and assessment, especially over land. Using AOD products with at least 70 months' worth of measurements collected during 2002–15 at 53 Aerosol Robotic Network(AERONET) sites over land,Mann–Kendall(MK) trends in AOD were derived and taken as the ground truth data for evaluating the corresponding results from MODIS onboard Aqua. The results showed that the AERONET AOD trends over all sites in Europe and North America, as well as most sites in Africa and Asia, can be reproduced by MODIS/Aqua. However, disagreement in AOD trends between MODIS and AERONET was found at a few sites in Australia and South America. The AOD trends calculated from AERONET instantaneous data at the MODIS overpass times were consistent with those from AERONET daily data, which suggests that the AOD trends derived from satellite measurements of 1–2 overpasses may be representative of those from daily measurements.  相似文献   

12.
利用MODIS_L1B数据,结合AERONET(AErosol RObotic NETwork)地面观测与反演的AOD(Aerosol Optical Depth)数据、北京市自动气象站网的能见度观测数据和北京市道面交通气象监测网的能见度观测数据,选取2012年3月6—11日期间发生在北京市的一次重大霾天气过程作为典型个例,反演了全过程的AOD和能见度变化,分析了两者之间的关系。结果表明:1)由MODIS遥感数据反演的AOD值与地面实测AOD值变化趋势均呈“单峰型”,但由于存在观测时间的偏差,总体上反演值高于实测值;2)利用AOD反演值得到的能见度值与实际能见度观测值基本吻合,两者的时空变化趋势基本一致,两者之间的相关系数大于0.6(P<0.01),符合此次霾过程的实际发生特征。  相似文献   

13.
This study evaluates the spatial and temporal variation of the aerosol optical depth (AOD), the particle size characteristics (Ångström coefficients) and single scattering albedos during selected episodes over the Mediterranean area in 2006, based on independent observational datasets. We compare the satellite data of MODIS and MISR with those of the ground-based AERONET and in situ measurements. In general the yearly mean MODIS and MISR AODs as well as their temporal variation are in good agreement with AERONET. The highest AODs are caused by mineral dust outbreaks and the accumulation of anthropogenic aerosols during stagnant meteorological conditions. The comparison of MODIS with MISR aerosol optical properties for June corroborates that the AODs, Ångström coefficients and single scattering albedos agree well, and indicates the presence of high dust loads over the Mediterranean. Later in summer, however, MISR AOD is generally lower than MODIS, which is consistent with previous studies that show that MISR tends to underestimate and MODIS tends to overestimate AOD over land when compared to AERONET observations. Comparing MODIS Aqua Deep Blue with MISR for June over the Saharan desert reveals some differences in the location and the maxima of the AODs. Over the eastern Mediterranean highest dust loads occur during spring and autumn. Biomass burning activities around the Black Sea during July and August cause high AODs (e.g. by agricultural waste burning), and the particulate pollution is transported to the eastern Mediterranean and the Middle East by the prevailing northerly Etesian winds.  相似文献   

14.
塔克拉玛干沙漠地区气溶胶光学厚度卫星遥感产品验证   总被引:2,自引:0,他引:2  
基于塔克拉玛干沙漠地区地基太阳光度计数据,系统验证2007~2008年星载多角度成像光谱仪(MISR)、中分辨率成像光谱仪(MODIS)和臭氧监测仪(OMI)气溶胶反演产品,旨在定量评估这些产品在我国沙漠地区的气溶胶光学厚度(AOD)反演精度。结果表明:MODIS/AOD的相关系数在4种产品中最高(0.91),OMI/AOD次之(0.87),其次为MISR/AOD(0.84),OMI/UVAI相关系数偏低(0.51)。MISR/AOD均方根误差(0.14)和平均偏差(-0.06)在4种反演产品中最低。与地基观测相比,MISR/AOD、MODIS/AOD系统偏低,OMI/AOD、OMI/UVAI系统偏高。在相同比较条件下(地基观测气溶胶光学厚度值限定在2.0以内),MISR的均方根误差和平均偏差在4种反演产品中最低,且相关系数也较高(0.84)。尽管存在诸多不同,但3种探测器气溶胶反演产品均能较好地展示该地区的气溶胶季节变化。塔克拉玛干沙漠春、夏季AOD较大,秋、冬季AOD相对较小。ngstrm波长指数的结果表明,春季(3~5月)最小(均值为0.11),夏季(6~8月)次之,秋季(9~11月)和冬季(12月至次年2月)较大(均值达到0.61),这表明在春、夏季气溶胶粒子偏大,秋、冬季气溶胶粒子偏小。此外,通过研究2000~2010年AOD年际变化表明,由于塔克拉玛干沙漠地区属于沙尘源区,气溶胶类型较为单一,所以总体来说,变化趋势不是较为明显。从反演结果来看,2003年的气溶胶含量为此10年中最高,年均值达到0.32;2005年的气溶胶含量在这10年中最低,年均值为0.28。  相似文献   

15.
正1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China2University of Chinese Academy of Sciences, Beijing 100049, China  相似文献   

16.
京津冀地区气溶胶时空分布及与城市化关系的研究   总被引:2,自引:1,他引:1  
张西雅  扈海波 《大气科学》2017,41(4):797-810
利用AERONET(AErosol RObotic NETwork)数据对2008~2012年Terra MODIS(MOderate-resolutionImaging Spectroradiometer)C006 3 km卫星遥感气溶胶产品在京津冀地区的适用性进行了验证,分析京津冀地区3km分辨率气溶胶光学厚度(AOD)的时空分布和变化特征。利用DMSP(Defense Meteorological Satellite System)/OLS(Operational Linescan System)夜间灯光数据作为城市化评价手段,对京津冀地区城市化与AOD时空分布之间的关系进行了研究。结果表明:(1)MODIS 3 km气溶胶产品遥感反演数据和同期AERONET监测数据在研究区具有很好的一致性,相关系数达0.91,满足期望要求;(2)时间上,2008~2012年研究区年平均AOD值在0.361~0.453之间变化,年际间变化浮动大,总体呈下降趋势;AOD春季呈明显下降趋势,夏季总体呈微弱上升趋势,秋季和冬季呈明显上升趋势;(3)空间上,2008~2012年北京、天津和河北中南部的AOD值较高,河北北边AOD值较低;四季AOD空间分布呈现较强烈季节变化,夏季最高,冬季最低;(4)夜间灯光数据和AOD时空分布不仅在空间分布上呈现较好的一致性,且2008~2012年二者的地理权重回归(GWR)模型拟合度R2达0.8左右。研究区内AOD与夜间灯光数据二者相关性显著,城市化发展水平和人类活动对气溶胶的分布有着明显的影响。  相似文献   

17.
The quality of the MODIS C6 3-km and 10-km aerosol optical depth(AOD) products retrieved by the Dark Target(DT)method is discussed using ground-based observations in the Beijing–Tianjin–Hebei region from 1 August 2007 to 31 July2008. Good consistency exists between the 3-km and 10-km products and ground-based observations. The retrieval accuracy of the two products both show distinctive seasonality. The percentage falling within the expected error(EE) is largest in the winter, moderate in the spring and autumn, and smallest in the summer. A worse overestimation appears in the spring and summer(27%–66%). However, the 3-km and 10-km products over different surfaces still exhibit obvious deviations. The 10-km product performs better in the large cities, while the 3-km product has advantages in the suburbs. In urban areas, the percentage falling within EE of the 3-km AOD product(18%–59%) is lower than that for the 10-km AOD product(31%–69%). However, in suburban areas, the percentage falling within EE of the 3-km AOD product(61%–84%) is higher than for the 10 km AOD product(54%–83%).The percentages falling within EE differ considerably when the AOD is greater than1.5(73% and 63% for the 3-km and 10-km products, respectively). On the whole, the 3-km(10-km) AOD product performs better in suburban(urban) areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号