首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The technique on computing the horizontal pressure gradient force(PGF)in RegCM2 is improved with the error subtraction method.Moreover,the regional climate in June of 1991 in China is simulated by employing the RegCM2.Comparison with other schemes for computing the PGF shows that the error subtraction method can effectively reduce the error of the PGF,improve the simulation of winds and alleviate the spurious precipitation in steep topographic areas.Furthermore,the simulation of precipitation in other areas is in better accordance with the observation.  相似文献   

2.
Impacts of greenhouse effects(2×CO2) on climate change over China as simulated by a regional climate model have been investigated.The model was based on RegCM2 and is nested in one-way mode within a global coupled atmosphere-ocean model(CSIRO R21L9 AOGCM).Two multi-year simulations,the control run with normal CO2 concentration and the sensitivity run with doubled CO2 concentration are conducted. As Part I of the publications,results of control run of the CSIRO,i.e.its simulation of present climate in China,are analyzed briefly.It shows that the model can basically reproduce the surface air temperature and precipitation pattern over China.Therefore,its outputs can be used to drive the regional model. Analysis of control run of RegCM shows that with a high resolution,the model improves the simulations of surface air temperature and precipitation in China as compared to the CSIRO model, especially for the precipitation.The spatial correlation coefficient between simulated and observed annual temperature increased from 0.83 in the CSIRO to 0.92 in the RegCM and for annual precipitation from 0.48 in the CSIRO to 0.65 in the RegCM.A similar improvement in the RegCM compared to the CSIRO was found in all simulated months.The main improvement for surface temperature is that RegCM can simulate the fine scale structure of temperature caused by topography.RegCM greatly improved the spatial distribution of precipitation by eliminating the virtual precipitation center in central China,which was simulated by many other GCMs.The precipitation simulated by RegCM in North and Northwest China is smaller than that by CSIRO, which makes it closer to the observation.  相似文献   

3.
本研究将次网格坡地辐射参数化方案引入到区域气候模式(RegCM4. 1)中,并研究次网格坡地辐射参数化对RegCM4. 1模拟东亚夏季气候性能的影响。结果表明:RegCM4. 1高估了夏季青藏高原的热源作用,模拟低层偏强的西南季风导致了模拟的中国夏季降水量总体偏大。引入次网格坡地辐射参数化方案后,模式模拟的青藏高原夏季地表太阳辐射通量和长波辐射通量减小分别可达5%和12%以上,夏季减弱的青藏高原热源作用使得低层西南季风减弱,从而改善了模式对中国夏季降水的模拟;而且改善程度自东南向西北递减,在东南地区模拟夏季降水的相对均方根误差减小9%,空间相关系数和Taylor评分分别提高0. 14和0. 08。  相似文献   

4.
区域气候模式RegCM2对标量粗糙敏感性试验   总被引:3,自引:0,他引:3  
和渊  苏炳凯等 《气象科学》2001,21(2):136-146
在地气通量的计算中,一般没有考虑温度、水汽、动量的相应粗糙度之间的不同。本文将标量粗糙度Z0T和Z0q引入区域气候模式RegCM2的陆面过程BATS中,用1991年6月与7月的观测资料作了三组敏感性试验,并同实况进行了比较。结果表明:在区域气候模式RegCM2中引入标量粗糙度后,提高了地气间感热通量与潜热通量的计算精度,改善了地表温度和地表比湿的模拟,进而改变了降水的模拟,表明区域气候模式对标量粗糙是敏感的,并且在晴天状况下更为敏感。  相似文献   

5.
使用RegCM2区域气候模式单向嵌套澳大利亚CSIRO R21L9全球海-气耦合模式,进行了CO2加倍对中国区域气候变化影响的数值试验研究,分析了控制试验(1×CO2)即模式对中国当代气候的模拟情况.首先给出了全球模式控制试验在中国地区的结果,分析表明它对中国区域的地面气温和降水具有一定的模拟能力,其结果可以用来制作驱动区域气候模式的初始场和侧边界.对RegCM2 5 a时间长度控制试验积分结果的分析与检验表明,区域气候模式由于具有较高的分辨率和较完善的物理过程,它对中国区域地面气温和降水的模拟效果较全球模式有了较大提高,如它模拟的各月气温与实况的相关系数全年12个月的平均由全球模式的0.83提高到0.92,降水由0.48提高到0.65.  相似文献   

6.
使用区域气候模式RegCM4.4,对全球模式CSIRO-Mk3.6.0在RCP4.5情景下的气候变化试验结果(1950-2100年)在东亚地区进行25 km动力降尺度试验,比较了CSIRO-Mk3.6.0和RegCM4.4预估中国地区的21世纪气候变化。结果表明,两个模式预估未来中国地区气温持续升高,升温幅度具有区域性特征,RegCM4.4预估区域平均升温幅度低于CSIRO-Mk3.6.0,但二者年际波动基本一致。两个模式预估未来降水在中国西部以持续增加为主,东部则表现出较大的不一致性,预估区域平均年降水量变化不大,呈现冬季明显增加,夏季微弱减少的特点。此外,为了解区域气候模式对中国降水预估的不确定性,对本研究和以往RegCM3使用相同分辨率模拟得到的未来降水预估进行了对比,两个区域模式预估中国西部大部分地区未来降水一致性增加,东部存在明显不一致(冬季中、高纬除外)。  相似文献   

7.
RegCM3对东亚环流和中国气候模拟能力的检验   总被引:31,自引:1,他引:31  
使用RegCM3区域气候模式,嵌套ERA40再分析资料,对东亚地区进行了15年(1987~2001年)时间长度的数值积分试验,分析了模式对东亚平均环流及中国地区气温和降水的模拟。结果表明,模式对东亚平均环流的特征和中国地区降水、地面气温的年、季地理分布和季节变化特征均具有一定的模拟能力,对气温和降水年际变率的模拟也较好。此外模式模拟在测站稀少地区,可以提供局地如降水分布更可靠的信息。模式对气温的模拟存在1-3℃的系统性冷偏差;对中国地区降水地理分布的模拟也存在一定偏差,如对年平均降水的模拟中,降水最大值位置与观测有一定差距,特别是对冬季降水中心的模拟存在较大偏差。模式模拟的夏季降水,在中国北方地区总体偏大100-200 mm,南方总体偏小100-200 mm。模式对地面气温的模拟效果好于降水。  相似文献   

8.
A Regional Climate Model (RegCM3) 10-year (1990–1999) simulation over southwestern South Atlantic Ocean (SAO) is evaluated to assess the mean climatology and the simulation errors of turbulent fluxes over the sea. Moreover, the relationship between these fluxes and the rainfall over some cyclogenetic areas is also analyzed. The RegCM3 results are validated using some reanalyses datasets (ERA40, R2, GPCP and WHOI). The summer and winter spatial patterns of latent and sensible heat fluxes simulated by the RegCM3 are in agreement with the reanalyses (WHOI, R2 and ERA40). They show large latent heat fluxes exchange in the subtropical SAO and at higher latitudes in the warm waters of Brazil Current. In particular, the magnitude of RegCM3 latent heat fluxes is similar to the WHOI, which is probably related to two factors: (a) small specific humidity bias, and (b) the RegCM3 flux algorithm. In contrast, the RegCM3 presents large overestimation of sensible heat flux, though it simulates well their spatial pattern. This simulation error is associated with the RegCM3 underestimation of the 2-m air temperature. In southwestern SAO, in three known cyclogenetic areas, the reanalyses and the RegCM3 show the existence of different physical mechanisms that control the annual cycles of latent/sensible heating and rainfall. It is shown that over the eastern coast of Uruguay (35°–43°S) and the southeastern coast of Argentina (44°–52°S) the sea-air moisture and heat exchange play an important role to control the annual cycle of precipitation. This does not happen on the south/southeastern coast of Brazil.  相似文献   

9.
Summary Regional climate model and statistical downscaling procedures are used to generate winter precipitation changes over Romania for the period 2071–2100 (compared to 1961–1990), under the IPCC A2 and B2 emission scenarios. For this purpose, the ICTP regional climate model RegCM is nested within the Hadley Centre global atmospheric model HadAM3H. The statistical downscaling method is based on the use of canonical correlation analysis (CCA) to construct climate change scenarios for winter precipitation over Romania from two predictors, sea level pressure and specific humidity (either used individually or together). A technique to select the most skillful model separately for each station is proposed to optimise the statistical downscaling signal. Climate fields from the A2 and B2 scenario simulations with the HadAM3H and RegCM models are used as input to the statistical downscaling model. First, the capability of the climate models to reproduce the observed link between winter precipitation over Romania and atmospheric circulation at the European scale is analysed, showing that the RegCM is more accurate than HadAM3H in the simulation of Romanian precipitation variability and its connection with large-scale circulations. Both models overestimate winter precipitation in the eastern regions of Romania due to an overestimation of the intensity and frequency of cyclonic systems over Europe. Climate changes derived directly from the RegCM and HadAM3H show an increase of precipitation during the 2071–2100 period compared to 1961–1990, especially over northwest and northeast Romania. Similar climate change patterns are obtained through the statistical downscaling method when the technique of optimum model selected separately for each station is used. This adds confidence to the simulated climate change signal over this region. The uncertainty of results is higher for the eastern and southeastern regions of Romania due to the lower HadAM3H and RegCM performance in simulating winter precipitation variability there as well as the reduced skill of the statistical downscaling model.  相似文献   

10.
In this research the dynamic downscaling method by Regional Climate Model (RegCM4.5) was used to assess the performance and sensitivity of seasonal simulated North and West of Iran (NI&WI) climate factors to different convection schemes, and transforms the large-scale simulated climate variables into land surface states over the North of Iran (NI) and West of Iran (WI). A 30-year (1986–2015) numerical integration simulation of climate over NI&WI was conducted using the regional climate model RegCM4.5 nested in one-way ERA-Interim reanalysis data. The Grell, Kuo and MIT-Emanuel cumulus convection with Holtslag and University of Washington (UW) planetary boundary layer (PBL) parameterization schemes were applied in the running of RegCM4.5 to test their capability in simulating precipitation and temperature in winter-spring (January–April) over NI and WI. The results demonstrated that the RegCM4.5 model has a good potential for simulating the variables and trend of surface temperature over the NI and WI region. Magnitude of the model bias for land surface temperature over different regions of Iran varies by convection parameterization schemes. In most cases, the root mean square error between post-processed simulated seasonal average temperature and observation value was less than 1 °C, but there is a systematic “cold bias”. In general, with respect to land surface temperature simulations, a better performance is obtained when using post-processing model’s data with Holtslag PBL-Grell and Holtslag PBL-Kuo configuration schemes, compared to the other simulations, over the NI&WI region. Also, the UW PBL convection schemes show a relatively excellent spatial correlations and normalized standard deviations closer to 1 for thirty-year seasonal land surface temperature anomalies over the entire NI&WI region. However, the simulation accuracy of model for precipitation is not as optimal as for temperature. The dominant feature in model simulations is a dry bias with the largest average value (∼1.04 mm/day) over NI region, while the lowest mean bias precipitation (∼−0.47 mm/day), mainly located in WI region. In the comparison of six configuration convection schemes, the Emanuel scheme has been proven to be the most accurate for simulating winter-spring seasonal mean precipitation over NI&WI region. The accuracy of the scheme also showed great difference in simulated station interpolation of precipitation, which urges the improvement for the simulation capability of spatial distribution of precipitation. In general, for seasonal variation of precipitation, the Emanuel convection with two (Holtslag, UW) PBL configuration schemes outperforms with a good correlation score between 0.7−0.8 and normalized standard deviations closer to 1.  相似文献   

11.
F. Giorgi  X. Bi  J. S. Pal 《Climate Dynamics》2004,22(6-7):733-756
We present an analysis of a multidecadal simulation of present-day climate (1961–1990) over Europe with the regional climate model RegCM nested within the global atmospheric model HadAMH. Climatic means, interannual variability and trends are examined, with focus on surface air temperature and precipitation. The RegCM driven by HadAMH fields is able to reproduce the basic features of the observed mean surface climate over Europe, its seasonal evolution and the regional detail due to topographic forcing. Surface air temperature biases are mostly less than 1–2 °C and precipitation biases mostly within 10–20%. The RegCM has more intense vertical transport of temperature and water vapor than HadAMH, which results in lower surface air temperatures and greater precipitation than found in the HadAMH simulation. In some cases this is in the direction of greater agreement with observations, while in others it is in the opposite direction. The simulation shows a tendency to overestimate interannual variability of temperature and precipitation compared to observations, particularly during summer and over the Mediterranean regions. It is shown that in DJF, MAM and SON the RegCM interannual variability is primarily determined by the boundary forcing from HadAMH, while in JJA the internal model physics and resolution effects dominate over many subregions of the domain, and the RegCM has higher interannual variability than HadAMH. The precipitation trends simulated by the nested modeling system for the period 1961–1990 capture some features of the observed trends, in particular the cold season drying over the Mediterranean regions. Ensembles of simulations are, however, needed for a more robust assessment of the models capability to simulate climatic trends. Overall, this simulation is of good quality compared with previous nested RegCM experiments and will constitute the basis for the generation of climate change scenarios over the European region to be reported in future work.  相似文献   

12.
Coupling of the Community Land Model (CLM3) to the ICTP Regional Climate Model (RegCM3) substantially improves the simulation of mean climate over West Africa relative to an older version of RegCM3 coupled to the Biosphere Atmosphere Transfer Scheme (BATS). Two 10-year simulations (1992–2001) show that the seasonal timing and magnitude of mean monsoon precipitation more closely match observations when the new land surface scheme is implemented. Specifically, RegCM3–CLM3 improves the timing of the monsoon advance and retreat across the Guinean Coast, and reduces a positive precipitation bias in the Sahel and Northern Africa. As a result, simulated temperatures are higher, thereby reducing the negative temperature bias found in the Guinean Coast and Sahel in RegCM3–BATS. In the RegCM3–BATS simulation, warmer temperatures in northern latitudes and wetter soils near the coast create excessively strong temperature and moist static energy gradients, which shifts the African Easterly Jet further north than observed. In the RegCM3–CLM3 simulation, the migration and position of the African Easterly Jet more closely match reanalysis winds. This improvement is triggered by drier soil conditions in the RegCM3–CLM3 simulation and an increase in evapotranspiration per unit precipitation. These results indicate that atmosphere–land surface coupling has the ability to impact regional-scale circulation and precipitation in regions exhibiting strong hydroclimatic gradients.  相似文献   

13.
Multi-decadal high resolution simulations over the CORDEX East Asia domain were performed with the regional climate model RegCM3 nested within the Flexible Global Ocean-Atmosphere-Land System model, Grid-point Version 2 (FGOALS-g2). Two sets of simulations were conducted at the resolution of 50 km, one for present day (1980–2005) and another for near-future climate (2015–40) under the Representative Concentration Pathways 8.5 (RCP8.5) scenario. Results show that RegCM3 adds value with respect to FGOALS-g2 in simulating the spatial patterns of summer total and extreme precipitation over China for present day climate. The major deficiency is that RegCM3 underestimates both total and extreme precipitation over the Yangtze River valley. The potential changes in total and extreme precipitation over China in summer under the RCP8.5 scenario were analyzed. Both RegCM3 and FGOALS-g2 results show that total and extreme precipitation tend to increase over northeastern China and the Tibetan Plateau, but tend to decrease over southeastern China. In both RegCM3 and FGOALS-g2, the change in extreme precipitation is weaker than that for total precipitation. RegCM3 projects much stronger amplitude of total and extreme precipitation changes and provides more regional-scale features than FGOALS-g2. A large uncertainty is found over the Yangtze River valley, where RegCM3 and FGOALS-g2 project opposite signs in terms of precipitation changes. The projected change of vertically integrated water vapor flux convergence generally follows the changes in total and extreme precipitation in both RegCM3 and FGOALS-g2, while the amplitude of change is stronger in RegCM3. Results suggest that the spatial pattern of projected precipitation changes may be more affected by the changes in water vapor flux convergence, rather than moisture content itself.  相似文献   

14.
The skill of a regional climate model (RegCM4) in capturing the mean patterns, interannual variability and extreme statistics of daily-scale temperature and precipitation events over Mexico is assessed through a comparison of observations and a 27-year long simulation driven by reanalyses of observations covering the Central America CORDEX domain. The analysis also includes the simulation of tropical cyclones. It is found that RegCM4 reproduces adequately the mean spatial patterns of seasonal precipitation and temperature, along with the associated interannual variability characteristics. The main model bias is an overestimation of precipitation in mountainous regions. The 5 and 95 percentiles of daily temperature, as well as the maximum dry spell length are realistically simulated. The simulated distribution of precipitation events as well as the 95 percentile of precipitation shows a wet bias in topographically complex regions. Based on a simple detection method, the model produces realistic tropical cyclone distributions even at its relatively coarse resolution (dx = 50 km), although the number of cyclone days is underestimated over the Pacific and somewhat overestimated over the Atlantic and Caribbean basins. Overall, it is assessed that the performance of RegCM4 over Mexico is of sufficient quality to study not only mean precipitation and temperature patterns, but also higher order climate statistics.  相似文献   

15.
SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL   总被引:1,自引:0,他引:1  
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of themodel in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. AS for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.  相似文献   

16.
RegCM4.1对中国区域气候模拟能力评估   总被引:2,自引:0,他引:2  
利用中国气象局提供的1985—2004年756个台站的逐日降水和气温观测数据评估了区域气候模式(RegCM4.1)对中国地区不同季节的降水和气温的模拟性能,并结合中国的区域气候特征和气候带分布进行分区讨论。结果表明RegCM4.1能够较好地再现中国地区四季降水占全年百分比、降水率的空间分布特点以及降水带南北摆动的季节变化特征。RegCM4.1对平均气温分布模拟较好,强度和高低中心与观测事实接近,但对青藏高原地区的气温分布模拟值一致偏低。同时发现RegCM4.1能够合理再现内陆地区气温日较差明显大于沿海地区的总体分布特征,不过模拟值在新疆和沿海地区比观测结果均偏低。  相似文献   

17.
有地形模式中气压梯度力误差扣除法   总被引:4,自引:0,他引:4  
:在现有有地形的数值模式中,陡峭地形区气压梯度力的计算存在一个普遍问题,即计算精度较高的格式比较繁琐而费时,简单省时的格式又不精确和不稳定。为解决这个问题,作者等在最近提出了一种方法,称为气压梯度力的误差扣除法。该方法假定:气压梯度力的计算误差主要来自地形而与气压形势关系较小。用理想场对该方法进行检验后表明,这一方法是成功的。本文则用气候模式对作者提出的有地形数值模式中气压梯度力的误差扣除法进行了模拟检验。所用模式是作者等使用多年的P-混合坐标系5层模式,选用了四种气压梯度力的计算格式,即DDD格式、Corby格式、平均温度格式和经典中央差格式。比较了这四种格式在有无误差扣除时的模拟结果,发现:对于计算精度较高的格式,如DDD格式、Corby格式及平均温度格式,有无误差扣除的结果相差不大,但误差扣除法仍可在一定程度上改善模拟效果。对于计算精度差的格式,如经典中央差格式,在无误差扣除时计算不稳定,得不到模拟结果,进行误差扣除后,从根本上提高了其计算精度,因而也提高了计算的稳定性,达到了较满意的模拟效果。而且与其它格式的模拟结果相当接近。本文提出的误差扣除法可同时用于格点模式和谱模式。  相似文献   

18.
季节尺度区域气候模拟适应调整时间选取问题的数值试验   总被引:2,自引:0,他引:2  
文中利用区域气候模式RegCM3,以1998年夏季中国异常气候事件为例,对季节尺度区域气候模拟适应调整时间的选取问题进行了数值研究。共做了11个试验,每个试验的适应调整时间最短为10 d,最长为6个月,以检验适应调整时间长短对夏季中国异常气候事件模拟结果的影响。结果表明:对于大气变量而言,模式通常在经过4—8 d的适应调整时间后,就进入"气候模态"运行,此后模拟误差主要是由于模式对区域内大气过程描述能力不足造成的,对适应调整时间选取不再敏感,这进一步证实了区域气候模拟是一个边值问题的观点。各气候区平均降水量模拟结果受适应调整时间影响也不大,但不同的适应调整时间对降水分布格局模拟将产生一定影响,降水分布模拟结果随适应调整时间的不同存在一定的不确定性,这种不确定性通常出现在强降水发生区域。总之,对于季节尺度降水模拟,适应调整时间大于2个月效果更好。对降水分布格局模拟误差和东亚夏季风系统进退过程之间关系的进一步分析发现,模式对受夏季风系统影响比较大的区域模拟的降水相关系数变化性也比较大,因此,发展合适的积云对流参数化方案以提高受夏季风系统直接影响区域强降水过程的描述能力是改进区域气候模式对中国区域夏季气候模拟效果的有效途径。  相似文献   

19.
区域海气耦合模式对中国夏季降水的模拟   总被引:8,自引:0,他引:8  
姚素香  张耀存 《气象学报》2008,66(2):131-142
以区域气候模式RegCM3和普林斯顿海洋模式POM为基础,建立了一个区域海气耦合模式,对1963-2002年中国夏季气候进行模拟,重点分析该耦合模式对中国夏季降水的模拟性能以及降水模拟改进的可能原因.结果表明:耦合模式对中国夏季雨带分布的模拟明显优于控制试验(单独的大气模式),对长江流域以及华南降水的模拟性能改进尤为明显,同时耦合模式能够更为真实地刻画中国东部地区汛期雨带的移动.对降水的年际变化分析发现,耦合模式模拟的1963-2002年中国夏季降水年际变率与观测吻合,模拟的夏季长江流域降水与观测降水相关系数达到0.48,模拟的华南夏季降水与观测的相关系数达到0.61,而控制试验结果与观测降水的相关系数均较小.对中国东部长江流域夏季降水与近海海温的相关分析表明,用给定海温驱动的大气模式,并不能正确模拟出中国东部夏季降水与海温的关系,而耦合模式能够较好地模拟出长江流域与孟加拉湾、南海以及黑潮区海温的关系,与GISST(全球海冰和海表温度)和观测降水相关关系一致.对水汽输送通量的分析发现,控制试验模拟的水汽输送路径与NCEP/NCAR再分析资料相比差别较大,耦合模式模拟的来自海洋上的水汽输送强度和路径与NCEP/NCAR再分析资料一致,提高了耦合模式对水汽输送的模拟能力,从而改善了模式对华南以及长江流域降水的模拟.  相似文献   

20.
We present an analysis of a high resolution multi-decadal simulation of recent climate (1971–2000) over the Korean Peninsula with a regional climate model (RegCM3) using a one-way double-nested system. Mean climate state as well as frequency and intensity of extreme climate events are investigated at various temporal and spatial scales, with focus on surface air temperature and precipitation. The mother intermediate resolution model domain encompasses the eastern regions of Asia at 60 km grid spacing while the high resolution nested domain covers the Korean Peninsula at 20 km grid spacing. The simulation spans the 30-year period of January 1971 through December 2000, and initial and lateral boundary conditions for the mother domain are provided from ECHO-G fields based on the IPCC SRES B2 scenario. The model shows a good performance in reproducing the climatological and regional characteristics of surface variables, although some persistent biases are present. Main results are as follows: (1) The RegCM3 successfully simulates the fine-scale structure of the temperature field due to topographic forcing but it shows a systematic cold bias mostly due to an underestimate of maximum temperature. (2) The frequency distribution of simulated daily mean temperature agrees well with the observed seasonal and spatial patterns. In the summer season, however, daily variability is underestimated. (3) The RegCM3 simulation adequately captures the seasonal evolution of precipitation associated to the East Asia monsoon. In particular, the simulated winter precipitation is remarkably good, clearly showing typical precipitation patterns that occur on the northwestern areas of Japan during the winter monsoon. Although summer precipitation is underestimated, area-averaged time series of precipitation over Korea show that the RegCM3 agrees better with observations than ECHO-G both in terms of seasonal evolution and precipitation amounts. (4) Heavy rainfall phenomena exceeding 300 mm/day are simulated only at the high resolution of the double nested domain. (5) The model shows a tendency to overestimate the number of precipitation days and to underestimate the precipitation intensities. (6) A CSEOF analysis reveals that the model captures the strength of the annual cycle and the surface warming trend throughout the simulated period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号