首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Various aspects of the role of uncertainty in greenhouse gas emission reduction policy are analyzed with the integrated assessment model FUND. FUND couples simple models of economy, climate, climate impacts, and emission abatement. Probability distribution functions are assumed for all major parameters in the model. Monte Carlo analyses are used to study the effects of parametric uncertainties. Uncertainties are found to be large and grow over time. Uncertainties about climate change impacts are more serious than uncertainties about emission reduction costs, so that welfare-maximizing policies are stricter under uncertainty than under certainty. This is more pronounced without than with international cooperation. Whether or not countries cooperate with one another is more important than whether or not uncertainty is considered. Meeting exogenously defined emission targets may be more or less difficult under uncertainty than under certainty, depending on the asymmetry in the uncertainty and the central estimate of interest. The major uncertainty in meeting emissions targets in each of a range of possible future is the timing of starting (serious) reduction policies. In a scenario aiming at a stable CO2 concentration of 550 ppm, the start date varies 20 years for Annex I countries, and much longer for non-Annex countries. Atmospheric stabilization at 550 ppm does not avoid serious risks with regard to climate change impacts. At the long term, it is possible to avoid such risks but only through very strict emission control at high economic costs.  相似文献   

2.
While the international community has agreed on the long-term target of limiting global warming to no more than 2 °C above pre-industrial levels, only a few concrete climate policies and measures to reduce greenhouse gas (GHG) emissions have been implemented. We use a set of three global integrated assessment models to analyze the implications of current climate policies on long-term mitigation targets. We define a weak-policy baseline scenario, which extrapolates the current policy environment by assuming that the global climate regime remains fragmented and that emission reduction efforts remain unambitious in most of the world’s regions. These scenarios clearly fall short of limiting warming to 2 °C. We investigate the cost and achievability of the stabilization of atmospheric GHG concentrations at 450 ppm CO2e by 2100, if countries follow the weak policy pathway until 2020 or 2030 before pursuing the long-term mitigation target with global cooperative action. We find that after a deferral of ambitious action the 450 ppm CO2e is only achievable with a radical up-scaling of efforts after target adoption. This has severe effects on transformation pathways and exacerbates the challenges of climate stabilization, in particular for a delay of cooperative action until 2030. Specifically, reaching the target with weak near-term action implies (a) faster and more aggressive transformations of energy systems in the medium term, (b) more stranded investments in fossil-based capacities, (c) higher long-term mitigation costs and carbon prices and (d) stronger transitional economic impacts, rendering the political feasibility of such pathways questionable.  相似文献   

3.
Decision makers facing emission-reduction targets need to decide which abatement measures to implement, and in which order. This article investigates how marginal abatement cost (MAC) curves can inform such a decision. We re-analyse a MAC curve built for Brazil by 2030, and show that misinterpreting MAC curves as abatement supply curves can lead to suboptimal strategies. It would lead to (1) under-investment in expensive, long-to-implement and large-potential options, such as clean transportation infrastructure, and (2) over-investment in cheap but limited-potential options such as energy-efficiency improvement in refineries. To mitigate this issue, the article proposes a new graphical representation of MAC curves that explicitly renders the time required to implement each measure.

Policy relevance

In addition to the cost and potential of available options, designing optimal short-term policies requires information on long-term targets (e.g. halving emissions by 2050) and on the speed at which measures can deliver emission reductions. Mitigation policies are thus best investigated in a dynamic framework, building on sector-scale pathways to long-term targets. Climate policies should seek both quantity and quality of abatement, by combining two approaches: a ‘synergy approach’ that focuses on the cheapest mitigation options and maximizes co-benefits, and an ‘urgency approach’ that starts from a long-term objective and works backward to identify actions that need to be implemented early. Accordingly, sector-specific policies may be used (1) to remove implementation barriers on negative- and low-cost options and (2) to ensure short-term targets are met with abatement of sufficient quality. Indeed, such policies can avoid under-investment in the long-to-implement options required to reach long-term targets, which are otherwise difficult to enforce.  相似文献   

4.
Abstract

We propose that international climate change policy would be strengthened by the development and adoption of targets for atmospheric concentrations of greenhouse gases 25–50 years in the future in addition to near- and long-term targets. ‘Interim concentration targets’, which could be accommodated under the current Convention/Protocol framework, would provide several advantages over the current focus on either the short term (e.g. Kyoto Protocol) or the long term (e.g. ultimate stabilization targets). Interim targets would help constrain rates of climate change (which are not sufficiently addressed by short- or long-term targets, even when paired together). They would also provide a means for keeping open the option of achieving a range of long-term goals while uncertainty (and political disagreement) over the appropriate goal is resolved. We substantiate a number of rationales for such an approach, discuss the use of interim targets in other contexts, and illustrate how such targets for climate change policy might be set.  相似文献   

5.
Multi-gas Emissions Pathways to Meet Climate Targets   总被引:1,自引:1,他引:1  
So far, climate change mitigation pathways focus mostly on CO2 and a limited number of climate targets. Comprehensive studies of emission implications have been hindered by the absence of a flexible method to generate multi-gas emissions pathways, user-definable in shape and the climate target. The presented method ‘Equal Quantile Walk’ (EQW) is intended to fill this gap, building upon and complementing existing multi-gas emission scenarios. The EQW method generates new mitigation pathways by ‘walking along equal quantile paths’ of the emission distributions derived from existing multi-gas IPCC baseline and stabilization scenarios. Considered emissions include those of CO2 and all other major radiative forcing agents (greenhouse gases, ozone precursors and sulphur aerosols). Sample EQW pathways are derived for stabilization at 350 ppm to 750 ppm CO2 concentrations and compared to WRE profiles. Furthermore, the ability of the method to analyze emission implications in a probabilistic multi-gas framework is demonstrated. The probability of overshooting a 2 C climate target is derived by using different sets of EQW radiative forcing peaking pathways. If the probability shall not be increased above 30%, it seems necessary to peak CO2 equivalence concentrations around 475 ppm and return to lower levels after peaking (below 400 ppm). EQW emissions pathways can be applied in studies relating to Article 2 of the UNFCCC, for the analysis of climate impacts, adaptation and emission control implications associated with certain climate targets. See for EQW-software and data.  相似文献   

6.
Abstract

In the coming years the international debate on commitments for the second commitment period under the Kyoto Protocol will intensify. In this study, the Global Triptych approach is put forward as an input for international decision-making concerning the differentiation of commitments by 2020. It is a sector- and technology-oriented approach, and we calculated quantitative emission limitation objectives and global emissions starting from bottomup information on long-term reduction opportunities. Central to the calculations were long-term sustainability targets for the year 2050, formulated for (1) energy efficiency in the energy-intensive industry, (2) greenhouse gas intensity of electricity production, and (3) per capita emissions in the domestic sectors. Calculated emission limitation objectives for 13 world regions ranged from about ?30% to more than +200%. The ranking of world regions in the differentiation turned out to be independent of the levels chosen for the long-term sustainability targets. The objectives seem sufficient to maintain the long-term possibility of stabilizing atmospheric greenhouse gas concentrations at about 550 ppm CO2-eq, but will require severe emission reductions. These may be relaxed to a certain degree if stabilization at 650 ppm CO2-eq is aimed for. We conclude that the bottom-up character of the approach made it possible to examine important basic principles of the Climate Convention, including equity, the needs and circumstances of developing countries, cost-effectiveness and sustainable development.  相似文献   

7.
This paper synthesizes results of the multi-model Energy Modeling Forum 27 (EMF27) with a focus on climate policy scenarios. The study included two harmonized long-term climate targets of 450 ppm CO2-e (enforced in 2100) and 550 pm CO2-e (not-to-exceed) as well as two more fragmented policies based on national and regional emissions targets. Stabilizing atmospheric GHG concentrations at 450 and 550 ppm CO2-e requires a dramatic reduction of carbon emissions compared to baseline levels. Mitigation pathways for the 450 CO2-e target are largely overlapping with the 550 CO2-e pathways in the first half of the century, and the lower level is achieved through rapid reductions in atmospheric concentrations in the second half of the century aided by negative anthropogenic carbon flows. A fragmented scenario designed to extrapolate current levels of ambition into the future falls short of the emissions reductions required under the harmonized targets. In a more aggressive scenario intended to capture a break from observed levels of stringency, emissions are still somewhat higher in the second half due to unabated emissions from non-participating countries, emphasizing that a phase-out of global emissions in the long term can only be reached with full global participation. A key finding is that a large range of energy-related CO2 emissions can be compatible with a given long-term target, depending on assumptions about carbon cycle response, non-CO2 and land use CO2 emissions abatement, partly explaining the spread in mitigation costs.  相似文献   

8.
An upstream cap-and-trade system that rations allowances for the carbon content of fuel inputs could achieve wider coverage than existing CO2 emission programmes or most of those proposed in draft US legislation, but would risk shortages and price spikes. Allowance price volatility could be avoided with a CO2-price corridor established through auctions, similar in some respects to how central banks manage short-term interest rates with open market operations. Building on the central bank analogy, a Greenhouse Gas Board could be established with the ‘instrument independence’ to set annual CO2-price corridors in line with broadly-framed, long-term climate goals laid out in legislation. National and regional Boards of this nature might also help facilitate the international coordination of climate policies.  相似文献   

9.
《Climate Policy》2013,13(2):211-227
Abstract

This paper assesses five options for targets that could be taken by all countries to meet the ultimate objective of the climate change convention: fixed, binding targets; dynamic targets; non-binding targets; sectoral targets; policies and measures. Each is evaluated according to criteria of environmental effectiveness, cost-effectiveness, contribution to economic growth and sustainable development, and equity. While fixed, binding targets continue to be viable for industrialised countries, they do not seem suitable for many developing countries in the near future. Dynamic targets could alleviate developing countries' concerns about constraining their development as well as broader concerns about possible introduction of “hot air” in a world trading regime; they could also be considered for some or all industrialised countries. Non-binding targets could be politically appealing to developing countries, alleviate fears about development and/or hot air, but might only allow conditional participation in emissions trading by developing countries. Sectoral targets could offer a pragmatic first step—although their cost-effectiveness might be questioned. Finally, targets based on commitments to implement specific policies and measures might drive mitigation action and be part of negotiated packages including financial and technological co-operation. All these options may coexist in the future.  相似文献   

10.
The energy sector is the main contributor to GHG emissions in Saudi Arabia. The tremendous growth of GHG emissions poses serious challenges for the Kingdom in terms of their reduction targets, and also the mitigation of the associated climate changes. The rising trend of population and urbanization affects the energy demand, which results in a faster rate of increase in GHG emissions. The major energy sector sources that contribute to GHG emissions include the electricity generation, road transport, desalination plants, petroleum refining, petrochemical, cement, iron and steel, and fertilizer industries. In recent years, the energy sector has become the major source, accounting for more than 90% of national CO2 emissions. Although a substantial amount of research has been conducted on renewable energy resources, a sustainable shift from petroleum resources is yet to be achieved. Public awareness, access to energy-efficient technology, and the development and implementation of a legislative framework, energy pricing policies, and renewable and alternative energy policies are not mature enough to ensure a significant reduction in GHG emissions from the energy sector. An innovative and integrated solution that best serves the Kingdom's long-term needs and exploits potential indigenous, renewable, and alternative energy resources while maintaining its sustainable development stride is essential.

Policy relevance

The main contributor to GHG emissions in Saudi Arabia is the energy sector that accounts for more than 90% of the national CO2 emissions. Tremendous growth of GHG emissions poses serious challenges for the Kingdom in their reduction and mitigating the associated climate changes. This study examines the changing patterns of different activities associated with energy sector, the pertinent challenges, and the opportunities that promise reduction of GHG emissions while providing national energy and economic security. The importance of achieving timely, sustained, and increasing reductions in GHG emissions means that a combination of policies may be needed. This study points to the long-term importance of making near- and medium-term policy choices on a well-informed, strategic basis. This analytical paper is expected to provide useful information to the national policy makers and other decision makers. It may also contribute to the GHG emission inventories and the climate change negotiations.  相似文献   

11.
As the number of instruments applied in the area of energy and climate policy is rising, the issue of policy interaction needs to be explored further. This article analyses the interdependencies between the EU Emissions Trading Scheme (EU ETS) and the German feed-in tariffs (FITs) for renewable electricity in a quantitative manner using a bottom-up energy system model. Flexible modelling approaches are presented for both instruments, with which all impacts on the energy system can be evaluated endogenously. It is shown that national climate policy measures can have an effect on the supranational emissions trading system by increasing emission reduction in the German electricity sector by up to 79 MtCO2 in 2030. As a result, emission certificate prices decline by between 1.9 €/tCO2 and 6.1 €/tCO2 and the burden sharing between participating countries changes, but no additional emission reduction is achieved at the European level. This also implies, however, that the cost efficiency of such a cap-and-trade system is distorted, with additional costs of the FIT system of up to €320 billion compared with lower costs for ETS emission certificates of between €44 billion and €57 billion (cumulated over the period 2013–2020).

Policy relevance

In order to fulfil ambitious emission reduction targets a large variety of climate policy instruments are being implemented in Europe. While some, like the EU ETS, directly address CO2 emissions, others aim to promote specific low-carbon technologies. The quantitative analysis of the interactions between the EU ETS and the German FIT scheme for renewable sources in electricity generation presented in this article helps to understand the importance of such interaction effects. Even though justifications can be found for the implementation of both types of instrument, the impact of the widespread use of support mechanisms for renewable electricity in Europe needs to be taken into account when fixing the reduction targets for the EU ETS in order to ensure a credible long-term investment signal.  相似文献   

12.
Over 40 studies that analyse future GHG emissions allowances or reduction targets for different regions based on a wide range of effort-sharing approaches and long-term concentration stabilization levels are compared. This updates previous work undertaken for the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Regional reduction targets differ significantly for each effort-sharing approach. For example, in the Organisation for Economic Co-operation and Development (OECD) 1990 region, new proposals that emphasize the equity principles of responsibility, capability, and need, and those based on equal cumulative per capita emissions (carbon budgets), lead to relatively stringent emissions reduction targets. In order to reach a low concentration stabilization level of 450?ppm CO2e, the allowances under all effort sharing approaches in OECD1990 for 2030 would be approximately half of the emissions of 2010 with a large range, roughly two-thirds in the Economies in Transition (EIT), roughly at the 2010 emissions level or slightly below in Asia, slightly above the 2010 level in the Middle East and Africa and well below the 2010 level in Latin America. For 2050, allowances in OECD1990 and EIT would be a fraction of today's emissions, approximately half of 2010 emission levels in Asia, and possibly less than half of the 2010 level in Latin America.

Policy relevance

The concept of equity and the stringency of future national GHG reduction targets are at the heart of the current debate on the new international climate change agreement to be adopted in 2015. Policy insights gained from an analysis of over 40 studies, which have quantitatively analysed the proposed GHG reduction targets, are presented. It is found that the outcome of effort-sharing approaches is often largely determined by the way the equity principle is implemented and that the distributional impacts of such approaches can be significantly different depending on the criteria used, the stabilization level and shape of the global emissions pathway. However, the current literature only covers a small proportion of the possible allocation approaches. There should thus be an in-depth modelling comparison to ensure consistency and comparability of results and inform decision making regarding the reduction of GHG emissions.  相似文献   

13.
Economics of climate change mitigation forest policy scenarios for Ukraine   总被引:1,自引:0,他引:1  
Abstract

This article reveals the contribution of woodland expansion in Ukraine to climate change mitigation policies. The opportunities for climate change mitigation of three policy scenarios: (1) carbon storage in forests, (2) carbon storage and additional wood-for-fuel substitution, and (3) carbon storage with additional sink policy for wood products, are investigated by using a simulation technique, in combination with cost—benefit analysis. The article concludes that the Ukraine's forests and their expansion offer a low-cost opportunity for carbon sequestration. Important factors that influence the results are the discount rate and the time horizon considered in the models. The findings provide evidence that the storage climate change mitigation forest policy scenario is most viable for the country, under the assumptions considered in this research.  相似文献   

14.
While most long-term mitigation scenario studies build on a broad portfolio of mitigation technologies, there is quite some uncertainty about the availability and reduction potential of these technologies. This study explores the impacts of technology limitations on greenhouse gas emission reductions using the integrated model IMAGE. It shows that the required short-term emission reductions to achieve long-term radiative forcing targets strongly depend on assumptions on the availability and potential of mitigation technologies. Limited availability of mitigation technologies which are relatively important in the long run implies that lower short-term emission levels are required. For instance, limited bio-energy availability reduces the optimal 2020 emission level by more than 4 GtCO2eq in order to compensate the reduced availability of negative emissions from bioenergy and carbon capture and storage (BECCS) in the long run. On the other hand, reduced mitigation potential of options that are used in 2020 can also lead to a higher optimal level for 2020 emissions. The results also show the critical role of BECCS for achieving low radiative forcing targets in IMAGE. Without these technologies achieving these targets become much more expensive or even infeasible.  相似文献   

15.
A structurally highly simplified, globally integrated coupled climate-economic costs model SIAM (Structural Integrated Assessment Model) is used to compute optimal paths of global CO2 emissions that minimize the net sum of climate damage and mitigation costs. The model is used to study the sensitivity of the computed optimal emission paths with respect to various critical input assumptions. The climate module is represented by a linearized impulse-response model calibrated against a coupled ocean-atmosphere general circulation climate model and a three-dimensional global carbon-cycle model. The cost terms are represented by strongly simplified expressions designed for maximal transparency with respect to sensitive input assumptions. These include the discount rates for mitigation and damage costs, the inertia of the socio-economic system, and the dependence of climate damages on the change in temperature and the rate of change of temperature. Different assumptions regarding these parameters are believed to be the cause of the marked divergences of existing cost-benefit analyses based on more sophisticated economic models. The long memory of the climate system implies that very long time horizons of several hundred years need to be considered to optimize CO2 emissions on time scales relevant for a policy of sustainable development. Cost-benefit analyses over shorter time scales of a century or two can lead to dangerous underestimates of the long term climatic impact of increasing greenhouse-gas emissions. To avert a major long term global warming, CO2 emissions need to be reduced ultimately to very low levels. However, the draw-down can be realized as a gradual transition process over many decades and even centuries. This should nevertheless not be interpreted as providing a time cushion for inaction: the transition becomes more costly the longer the necessary mitigation policies are delayed. However, the long time horizon provides adequate flexibility for later adjustments. Short term energy conservation alone is insufficient and can be viewed only as a useful measure in support of the necessary long term transition to carbon-free energy technologies. For standard climate damage cost expressions, optimal emission paths limiting long term global warming to acceptable sustainable development levels are recovered only if climate damage costs are not significantly discounted. Discounting of climate damages at normal economic rates yields emission paths that are only weakly reduced relative to business as usual scenarios, resulting in high global warming levels that are incompatible with the generally accepted requirements of sustainable development. The solutions are nevertheless logically consistent with the underlying discounting assumption, namely that the occurrence of global warming damages in the distant future as a result of present human activities is of negligible concern today. It follows that a commitment to long term sustainable development, if it in fact exists, should be expressed by an intertemporal relation for the value of the earth's future climate which does not degrade significantly over the time horizon relevant for climate change. Since the future climate is a common assett whose value cannot be determined on the market, the appropriate discount rate for future climate damages should be determined by an assessment of the public willingness to pay today for the mitigation of future climate change. To translate our general conclusions into quantitative cost estimates required by decision makers, the present exploratory study needs to be extended using more detailed disaggregated climate damage and mitigation cost estimates and more realistic socio-economic models, including multi-actor interactions, inherent variability, the role of uncertainty and adaptive control strategies.  相似文献   

16.
Uncertainties in climate stabilization   总被引:1,自引:1,他引:0  
The atmospheric composition, temperature and sea level implications out to 2300 of new reference and cost-optimized stabilization emissions scenarios produced using three different Integrated Assessment (IA) models are described and assessed. Stabilization is defined in terms of radiative forcing targets for the sum of gases potentially controlled under the Kyoto Protocol. For the most stringent stabilization case (“Level 1” with CO2 concentration stabilizing at about 450 ppm), peak CO2 emissions occur close to today, implying (in the absence of a substantial CO2 concentration overshoot) a need for immediate CO2 emissions abatement if we wish to stabilize at this level. In the extended reference case, CO2 stabilizes at about 1,000 ppm in 2200—but even to achieve this target requires large and rapid CO2 emissions reductions over the twenty-second century. Future temperature changes for the Level 1 stabilization case differ noticeably between the IA models even when a common set of climate model parameters is used (largely a result of different assumptions for non-Kyoto gases). For the Level 1 stabilization case, there is a probability of approximately 50% that warming from pre-industrial times will be less than (or more than) 2°C. For one of the IA models, warming in the Level 1 case is actually greater out to 2040 than in the reference case due to the effect of decreasing SO2 emissions that occur as a side effect of the policy-driven reduction in CO2 emissions. This effect is less noticeable for the other stabilization cases, but still leads to policies having virtually no effect on global-mean temperatures out to around 2060. Sea level rise uncertainties are very large. For example, for the Level 1 stabilization case, increases range from 8 to 120 cm for changes over 2000 to 2300.  相似文献   

17.
This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2?°C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget.

The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450?ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550?ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450?ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets.

Policy relevance

In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2?°C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.  相似文献   

18.
This paper warns against the risk of underestimating the costs—and the uncertainty about the costs—of achieving stringent stabilization targets. We argue that a straightforward review of integrated assessment models results produces biased estimates for the more ambitious climate objectives such as those compatible with the 2°C of the European Union and the G8. The magnitude and range of estimates are significantly reduced because only the most optimistic results are reported for such targets. We suggest a procedure that addresses this partiality. The results show highly variable costs for the most ambitious scenarios.  相似文献   

19.
We investigate an important scientific uncertainty facing climate-change policymakers, namely, the impact of potential abrupt climatic change. We examine sequential decision strategies for abating climate change where near-term policies are viewed as the first of a series of decisions which adapt over the years to improving scientific information. We compare two illustrative near-term (1992–2002) policies - moderate and aggressive emission reductions - followed by a subsequent long-term policy chosen to limit global-mean temperature change to a specified ‘climate target’. We calculate the global-mean surface temperature change using a simple climate/ocean model and simple models of greenhouse-gas concentrations. We alter model parameters to examine the impact of abrupt changes in the sinks of carbon dioxide, the sources of methane, the circulation of the oceans, and the climate sensitivity, ΔT 2x. Although the abrupt changes increase the long-term costs of responding to climate change, they do not significantly affect the comparatively small cost difference between near-term strategies. Except for an abrupt increase in ΔT 2x, the investigated abrupt climate changes do not significantly alter the values of the climate target for which each near-term strategy is preferred. In contrast, innovations that reduce the cost of limiting greenhouse-gas emissions offer the potential for substantial abatement cost savings, regardless of which level of near-term abatement is selected.  相似文献   

20.
Can near-term public support of renewable energy technologies contain the increase of mitigation costs due to delays of implementing emission caps at the global level? To answer this question we design a set of first and second best scenarios to analyze the impact of early deployment of renewable energy technologies on welfare and emission timing to achieve atmospheric carbon stabilization by 2100. We use the global multiregional energy?Ceconomy?Cclimate hybrid model REMIND-R as a tool for this analysis. An important design feature of the policy scenarios is the timing of climate policy. Immediate climate policy contains the mitigation costs at less than 1% even if the CO2 concentration target is 410?ppm by 2100. Delayed climate policy increases the costs significantly because the absence of a strong carbon price signal continues the carbon intensive growth path. The additional costs can be decreased by early technology policies supporting renewable energy technologies because emissions grow less, alternative energy technologies are increased in capacity and their costs are reduced through learning by doing. The effects of early technology policy are different in scenarios with immediate carbon pricing. In the case of delayed climate policy, the emission path can be brought closer to the first-best solution, whereas in the case of immediate climate policy additional technology policy would lead to deviations from the optimal emission path. Hence, technology policy in the delayed climate policy case reduces costs, but in the case of immediate climate policy they increase. However, the near-term emission reductions are smaller in the case of delayed climate policies. At the regional level the effects on mitigation costs are heterogeneously distributed. For the USA and Europe early technology policy has a positive welfare effect for immediate and delayed climate policies. In contrast, India looses in both cases. China loses in the case of immediate climate policy, but profits in the delayed case. Early support of renewable energy technologies devalues the stock of emission allowances, and this effect is considerable for delayed climate policies. In combination with the initial allocation rule of contraction and convergence a relatively well-endowed country like India loses and potential importers like the EU gain from early renewable deployment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号