首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
龙振夏  李崇银 《气象学报》1996,54(5):521-535
利用IAP两层大气环流模式模拟研究了热带地区积云对流加热在大气对赤道东太平洋海温正异常响应中的作用。通过对积分结果进行分析发现:热带地区积云对流在大气对赤道东太平洋海温正异常的响应过程中起着非常重要的作用。若热带地区的积云对流加热减弱则大气中的遥响应(相关)型也减弱。同时我们还发现,热带地区的积云对流加热加强则响应场的30—60d低频振荡也得到加强。  相似文献   

2.
Based on the ECMWF data(1980-1983) and others, a further inquiry on the activities and the structure feature of 30-60 day oscillation in the tropical atmosphere has been completed. The following results are obtained:There is stronger perturbation kinetic energy of 30-60 day atmospheric oscillation(AO) in the equatorial eastern Pacific. This means the equatorial eastern Pacific is a stronger activity region of 30-60 day AO in the tropics. Analyses also show that the AO system with the time scale of 30-60 days might consist of various spatial scale disturbances. The zonal propagation of 30-60 day oscillation in the tropical atmosphere is not all eastward. Some differences are found for different spatial scales, and for propagations in upper and lower tropospheres. The meridional propagation of the oscillation is even more different in the various regions and might be related to the low-frequency wave train in the atmosphere. The stronger activities of 30-60 day AO in the equatorial middle-western Pacific are related to the El Nino events and the weaker ones are correspondent to the inverse El Nino phenomena.  相似文献   

3.
To add to the growing mature research on the tropical 30-50 day oscillations from a new prospective, the current work bases on dynamic analysis of baroclinic quasi-geostrophic models to discuss dynamic mechanisms for the generation and propagation of CISK-Rossby waves, and to understand restraints and effects of different wave structures and thermodynamic forcing on the 30-50 day oscillations in the tropical atmosphere. Some important properties of the oscillation propagation have been explained and, in detail, with respect to its meridional propagation and vertical “baroclinic” structure. The work has come up with some new opinions and viewpoints. New opinions about the propagation and energy dispersion are to be proved by more observations and study.  相似文献   

4.
文中利用EOF分析大气季节内振荡 (MJO)的时空变化的方法 ,研究了 1996年 9月~ 1997年 6月间的MJO活动对生成在印度洋—西太平洋海域的热带低压 /气旋的影响。结果发现 ,除西北太平洋之外 ,发生在其他区域的热带低压 /气旋有半数以上生成在向东移动的MJO的湿位相中。伴随MJO的向东传播 ,热带低压 /气旋平均生成位置也随之向东移动 ,而生成在西北太平洋的热带低压 /气旋分别受到向东和向西传播的MJO影响  相似文献   

5.
Based on multiple datasets, correlation and composite analyses, and case studies, this paper investigated possible influences of the Indian Ocean dipole (IOD) mode on the eastward propagation of intraseasonal oscillation in the tropical atmosphere. The results showed that (1) the 30-60 day outgoing longwave radiation anomalies in the southeastern Indian Ocean and the 30-60 day 850-hPa zonal wind anomalies over the equatorial central Indian Ocean were significantly correlated with the IOD index; (2) during positive IOD years, the anomalously cold water in the southeastern Indian Ocean and the 850-hPa anomalous easterlies over the equatorial central Indian Ocean might act as barriers to the continuously eastward propagation of the intraseasonal convection, which interrupts the Madden-Julian oscillation (MJO) propagation in the eastern equatorial Indian Ocean and western Pacific; and (3) during negative IOD years, the anomalously warm water in the southeastern Indian Ocean and the low-level westerly anomalies over the equatorial central Indian Ocean favor the eastward movement of MJO.  相似文献   

6.
The normal mode method is adopted to decompose the differences between simulations with SST(seasurface temperature)anomahes over centra-eastern Pacific and normal SST by use of a nine-layer global spec-tral model in order to investigate short-range climatic oscillation with various time scales forced by ElNino during the northern summer.Investigation shows that El Nino may have the following influence onatmosphere on various space-time scales.Extra-long wave components of Rossby mode forced by convectiveanomaly over equatorial western Pacific resulting from El Nino produce climatic oscillation on monthly(sea-sonal)time scale in middle-high latitudes of Southern and Northern Hemispheres;extra-long wave componentsof Kelvin mode forced by SST anomalies propagate along the equator,resulting in 30—60 day oscillation oftropical and subtropical atmosphere;and its long waves move eastward with westerly,resulting in quasi-biweekoscillation.  相似文献   

7.
CISK-rossby wave and the 30-60 Day Oscillation in the Tropics   总被引:1,自引:0,他引:1  
The 30-60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30-60 day oscillation mode in many aspects, such,as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30-60 oscil  相似文献   

8.
In a simple semi-geostropic model on the equatorial β-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heat-ing can excite the CISK-Kelvin wave and CISK-Rossby wave in the tropical atmosphere and they are all the low-frequency modes which drive the activities of 30-60 day oscillation in the tropics. The most favorable conditions to excite the CISK-Kelvin wave and CISK-Rossby wave are indicated: There is convection heating but not very strong in the atmosphere and there is weaker disturbance in the lower troposphere.The influences of vertical shearing of basic flow in the troposphere on the 30-60 day oscillation in the tropics are also discussed.  相似文献   

9.
    
In a simple semi-geostropic model on the equatorialβ-plane, the theoretical analysis on the 30-60 day oscillation in the tropical atmosphere is further discussed based on the wave-CISK mechanism. The convection heat-ing can excite the CISK-Kelvin wave and CISK-Rossby wave in the tropical atmosphere and they are all the low-frequency modes which drive the activities of 30-60 day oscillation in the tropics. The most favorable conditions to excite the CISK-Kelvin wave and CISK-Rossby wave are indicated: There is convection heating but not very strong in the atmosphere and there is weaker disturbance in the lower troposphere. The influences of vertical shearing of basic flow in the troposphere on the 30-60 day oscillation in the tropics are also discussed.  相似文献   

10.
An equatorial β-plane model which includes realistic non-uniform land-sea contrast and the underlying surface temperature distribution is used to simulate the 30-60 day oscillation (LFO) processes in tropical atmosphere, with emphasis on its longitude-dependent evolution and convective seesaw between Indian and the western Pacific oceans.The model simulated the twice-amplification of the disturbances over Indian and the western Pacific oceans while they are travelling eastward. It reproduced the dipole structure caused by the out-of-phase oscillation of the active centres in these two areas and the periodical transition between the phases of LFO. It is suggested that the convective seesaw is the result of interaction of the internal dynamics of tropical atmosphere with the zonally non-uniform thermal forcing from underlying surface. The convective activities are suppressed over Indonesia mari-time continents whilst they are favoured over the Indian Ocean and western Pacific warm waters, so there formed two active oscillation centres. The feedback of convection with large-scale flow slows down the propagation of disturb-ances when they are intensifying over these two areas, therefore they manifest a kind of quasi-stationary component to favor the ‘dipole’ structure. Whereas the disturbances weaken and speed up over the eastern Pacific cold water re-gion due to the interaction of sensible heating and evaporation with perturbational wind. Therefore the two major centers just show out-of-phase oscillation during onecycle around the latitudinal beltBy introducing the SST anomalies in El Ni?o and La Ni?a years into the surface temperature, we also show that they have significant influence on LFO processes. In an anomalously warm year, the LFO disturbances dissipate more slowly over the central-eastern Pacific region and can travel farther eastward; whilst in an anomalously cold year, the opposite is true.  相似文献   

11.
    
The 30–60 day oscillation is an important aspect of the atmospheric variance in the tropical area. A number of works have been done on this phenomenon, this article is a further one. A quasi-geostrophic linear model that consists of a two-layer free atmosphere and a well-mixed boundary layer is used to investigate the instability of intraseasonal oscillation, its propagation and vertical structures. Results show that the dynamical coupling and interaction between the barotropic and baroclinic components via boundary layer convergence / divergence are responsible for the appearance of a new kind of low-frequency wave. Such wave is very different from the traditional tropical Rossby wave. It can propagate westward and eastward. Some behaviours of it appear to resemble the observed 30–60 day oscillation mode in many aspects, such.as vertical structures, zonal and meridional propagations. Now many researchers emphasize the direct relationship between CISK-Kelvin mode and the tropical atmospheric 30–60 oscillation. It is considered that CISK-Rossby mode should not be neglected.  相似文献   

12.
 In this study, satellite-derived outgoing longwave radiation (OLR) and the reanalysis from the National Centers for Environmental Prediction/National Center for Atmospheric Research are used as verification data in a study of intraseasonal variability in the Goddard Laboratory for Atmospheres (GLA) and the United Kingdom Meteorological Office (UKMO) atmospheric general circulation models. These models simulated the most realistic intraseasonal oscillations (IO) of the 15 Atmospheric Model Intercomparison Project models previously analyzed. During the active phase of the intraseasonal oscillation, convection is observed to migrate from the Indian Ocean to the western/central Pacific Ocean, and into the South Pacific Convergence Zone (SPCZ). The simulated convection, particularly in the GLA model, is most realistic over the western/central Pacific Ocean and the SPCZ. In the reanalysis, the baroclinic structure of the IO is evident in the eddy-stream function, and eastward migration of the anticyclone/cyclone pairs occurs in conjunction with the eastward development of convection. Both the GLA and UKMO models exhibit a baroclinic structure on intraseasonal time scales. The GLA model is more realistic than the UKMO model at simulating the eastward migration of the anticyclone/cyclone pairs when the convection is active over the western/central Pacific. In the UKMO model, the main heating is located off the equator, which contributes to the irregular structures seen in this model on intraseasonal time scales. The maintenance and initiation of the intraseasonal oscillation has also been investigated. Analysis of the latent heat flux indicates that evaporative wind feedback is not the dominant mechanism for promoting the eastward propagation of the intraseasonal oscillation since evaporation to the west of the convection dominants. The data suggest a wave-CISK (conditional instability of the secondkind) type mechanism, although the contribution by frictional convergence is not apparent. In the GLA model, enhanced evaporation tends to develop in-place over the west Pacific warm pool, while in the UKMO simulation westward propagation of enhanced evaporation is evident. It is suggested that lack of an interactive ocean may be associated with the models systematic failure to simulate the eastward transition of convection from the Indian Ocean into the western Pacific Ocean. This hypothesis is based upon the examination of observed sea surface temperature (SST) and its relationship to the active phase of the intraseasonal oscillation, which indicates that the IO may evolve as a coupled ocean-atmosphere mode. The eastward propagation of convection appears to be related to the gradient of SST, with above normal SST to the east of the convection maintaining the eastward evolution, and decreasing SST near the western portion of the convective envelope being associated with the cessation of convection. Received: 13 September 1996/Accepted: 14 April 1997  相似文献   

13.
采用NCEP再分析资料,揭示了南海-西太平洋春季对流存在显著的10~30天振荡周期。在年际尺度上,南海-西太平洋春季对流10~30天振荡强度(简称SCSWP_SISO)与南海夏季风爆发日期存在显著的负相关关系。当春季菲律宾和西太平洋海温偏高、赤道太平洋中部及以东地区海温偏低时,索马里、110 °E越赤道气流会加强,南海-西太平洋偏西风加强,产生异常气旋性环流,垂直上升运动增强,水汽异常偏多,东西风切变增强,有利于SCSWP_SISO增强。而SCSWP_SISO增强时,有由南往北、自西向东的异常气旋传播,从而减弱低层副热带高压使之较早撤出南海,南海夏季风得以较早爆发。反之亦然。在不同的年代际背景下,SCSWP_SISO经历了偏弱、较弱和偏强的变化,但影响其变化的因子并不完全一致。在第一阶段(1958—1976年),主导因子是南海-西太平洋冷的海温与异常下沉运动、异常减弱的水汽-对流条件。在第二阶段(1977—1993年),主导因子为中东太平洋异常偏冷的海温以及局地异常减弱的风场垂直切变。在第三阶段(1994—2011年),主导因子为热带海温的整体偏暖、风场垂直切变的增强以及水汽-对流的加强。但随着SCSWP_SISO的年代际增强,其与南海夏季风爆发日期的相关关系却呈现下降趋势。   相似文献   

14.
运用IAPAGCM模式证实了大气对南极冰异常的强迫遥响应是激发产生全球大气季节内振荡的重要机制,进而着重考察了候平均偏差结果的时间序列,并且通过带通滤波处理,特别分析了响应场中30~60d低频振荡的特征及其活动。通过分析发现:大气对南极冰减退的响应是一种具有30~60d周期的低频遥响应,并呈现出清楚的二维Rossby波列特征;强迫场中的30~60d季节内振荡具有着同实际大气中的低频振荡相类似的垂直结构和传播特征。大气响应场中30~60d振荡能量在垂直方向上随高度的增加而增加,在纬向上表现出明显的区域性特征,即季节内振荡的最大动能区(由于CISK机制)分布在大洋内;EUP,PNA,ASA和RSA波列可能是全球大气低频扰动传播的主要路径,30~60d低频扰动在波列路径上的传播具有很大的一致性和系统性,从而使中高纬和热带地区、以及南北半球的30~60d大气振荡相互联系起来,而且可以认为,赤道中太平洋和赤道中大西洋地区是南北半球30~60d低频振荡间相互作用和相互联系的重要通道。  相似文献   

15.
In this paper, interactions between the 30-60 day oscillation, the Walker circulation and the convective activities in the tropical western Pacific during the Northern Hemisphere summer are analyzed by using the observed data of wind fields and high-cloud amounts for the period from 1980 to 1989.The analyzed results show that the 30-60 day oscillation (hereafter called LFO) may be largely affected by the convective activities in the tropical western Pacific. The LFO in the tropical western Pacific during the strong convective activities around the Philippines stronger than those during the weak convective activities around the Philippines. Moreover, in the case of strong convective activities around the Philippines, the LFO in the tropical west-ern Pacific and tropical eastern Indian Ocean generally propagates westward, and it is intensified by the LFO with a westward propagating center of maximum oscillation from the east to 140oE. However, in the case of weak convective activities around the Philippines, the LFO gradually becomes stronger with a eastward propagating center of maximum oscillation from the eastern Indian Ocean to the tropical western Pacific.Corresponding to the 30-60 day oscillation, the Walker circulation is also in oscillation over the tropical Pacific and its circulation cell seems to shift gradually westward from the tropical western Pacific to the tropical eastern In-dian Ocean with strong convective activities around the Philippines. This may maintain the intensification of convective activities there. However, during the weak convective activities around the Philippines, the Walker circula-tion gradually moves eastward and an ascending flow may appear in the equatorial central Pacific. This may cause convective activities to be intensified over the equatorial central Pacific.The analyzed results also show that the LFO in the tropical western Pacific and East Asia may be associated with the interannual oscillation of the SST anomaly in the tropical western Pacific.  相似文献   

16.
30—60天大气振荡的全球特征   总被引:14,自引:6,他引:14       下载免费PDF全文
李崇银 《大气科学》1991,15(3):66-76
利用ECMWF格点资料,分析研究了大气季节内(30—60天)振荡的全球特征。30—60天振荡动能的分布表明高纬度地区要比赤道地区大得多。说明那里有较突出的30—60天振荡。中高纬度地区的30—60天振荡与热带有明显不同,垂直结构为正压模态,以纬向2—4波为主,多为向酉传播。30—60天振荡存在明显的低频遥相关,北半球主要为欧亚—太平洋(EAP)型和PNA型,南半球主要有澳洲—南非(ASA)型和环南美(RSA)型,并且在全球范围构成南北半球相互衔接的低频波列,即EAP-ASA波列和PNA-RSA波列。南北半球30—60天大气振荡有明显的相互影响,本文研究了南北半球30—60天振荡相互影响的3种主要过程。  相似文献   

17.
热带大气中的准双周(10—20天)振荡   总被引:10,自引:3,他引:10  
李崇银  周亚萍 《大气科学》1995,19(4):435-444
基于欧洲中期天气预报中心(ECMWF)的资料(1981—1988),本文对全球热带大气中的10—20天(准双周)振荡进行了比较系统的研究,包括其动能的分布及演变。扰动的结构和传播特征等。资料分析充分表明,热带大气10—20天振荡是热带大气中另一重要低频系统,其动能比30—60天振荡还要大,而其结构和活动又同30—60天振荡很不一样。例如热带大气10—20天振荡主要表现为纬向波数2—4;垂直结构以正压特征更显著;主要表现为向西传播;其经向风分量与纬向风分量同等重要。因此,对热带大气10—20天振荡值得更多注  相似文献   

18.
热带和中高纬地区季节内振荡的特征及其动力学诊断   总被引:3,自引:0,他引:3  
使用5年低阶全球谱模式资料,对中高纬大气和热带大气季节内振荡的动力学性质和传播特征进行了诊断研究。分析发现模式再现了大气中季节内振荡在热带和中高纬地区的传播特性以及它们之间的差异。热带大气30—60天振荡在速度势场上表现为纬向—波结构和行波特性,而在散度风场上反映了赤道西太平洋—印度洋东西向偶极子型的振荡。中高纬大气30—60天振荡表现为定常波位相和振幅的变化,即波包络的传播特征。它与中高纬地区遥相关型的转换有关,通过遥相关位相和振幅的变化,不仅完成了热带和中高纬地区之间以及热带不同区域之间的能量输送,而且通过这种能量输送过程把南、北半球中高纬地区季节内振荡联系起来。   相似文献   

19.
Based on ECMWF daily grid point data in summer(May-August),1981,the distribution features of the source and sink of kinetic energy of atmosphere 30-60 day oscillation,including its horizontal distribution characteristics and its vertical structure characteristics,are investigated systematically with diagnostic analysis methods over a latitude belt between 80°N and 60°S.Also,the probable reasons for the existence of the source and sink of low frequency kinetic energy(LFKE) are discussed preliminarily.Results show that the horizontal distribution of the sources and sinks of kinetic energy of atmospheric 30-60 day oscillation is extremely different.The significant sources and sinks of LFKE mainly exist in the oceans and the coastal regions of continents or islands in the mid-high latitudes.It is also found that,in the vertical direction,the sources and sinks of kinetic energy of 30-60 day oscillation display barotropic structure in the mid-high latitudes of both hemispheres,but dispaly baroclinic structure in the equtorial region,and in the horizontal direction,the sources and sinks mainly display zonal wave-like distribution.The source and sink of LFKE are determinded by ageostrophic wind effect,frictional effect,interaction between sub-grid-scale systems,nonlinear interaction,and the flux-divergence of LFKE transported by transient wind.There are some regional reasons for the generation of sources and sinks which are not completely identical in different areas.  相似文献   

20.
运用LAPGCM模式证实了大气对南极冰异常的强迫遥响应是激发全球大气季节内振荡的重要机制,进而着重考察候平均偏差结果的时间序列,并且通过带通以处理,特别分析了响应场中30-60天低频振荡的重要特征,发现:大报对南极冰减退的响应是一种具有30-60天周期的低频遥响应。强迫场中的重要成分是30-60天季节内振荡,并且具有同实际大气中的低频振荡相类的垂直结构以及传播和分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号