首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Regression-based statistical downscaling is a method broadly used to resolve the coarse spatial resolution of general circulation models. Nevertheless, the assessment of uncertainties linked with climatic variables is essential to climate impact studies. This study presents a procedure to characterize the uncertainty in regression-based statistical downscaling of daily precipitation and temperature over a highly vulnerable area (semiarid catchment) in the west of Iran, based on two downscaling models: a statistical downscaling model (SDSM) and an artificial neural network (ANN) model. Biases in mean, variance, and wet/dry spells are estimated for downscaled data using vigorous statistical tests for 30 years of observed and downscaled daily precipitation and temperature data taken from the National Center for Environmental Prediction reanalysis predictors for the years of 1961 to 1990. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. In daily precipitation, downscaling uncertainties were evaluated from comparing monthly mean dry and wet spell lengths and their confidence intervals, cumulative frequency distributions of monthly mean of daily precipitation, and the distributions of monthly wet and dry days for observed and modeled daily precipitation. Results showed that uncertainty in downscaled precipitation is high, but simulation of daily temperature can reproduce extreme events accurately. Finally, this study shows that the SDSM is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % confidence level, while the ANN model is the least capable in this respect. This study attempts to test uncertainties of regression-based statistical downscaling techniques in a semiarid area and therefore contributes to an improvement of the quality of predictions of climate change impact assessment in regions of this type.  相似文献   

2.
Statistical downscaling is a technique widely used to overcome the spatial resolution problem of General Circulation Models (GCMs). Nevertheless, the evaluation of uncertainties linked with downscaled temperature and precipitation variables is essential to climate impact studies. This paper shows the potential of a statistical downscaling technique (in this case SDSM) using predictors from three different GCMs (GCGM3, GFDL and MRI) over a highly heterogeneous area in the central Andes. Biases in median and variance are estimated for downscaled temperature and precipitation using robust statistical tests, respectively Mann?CWhitney and Brown?CForsythe's tests. In addition, the ability of the downscaled variables to reproduce extreme events is tested using a frequency analysis. Results show that uncertainties in downscaled precipitations are high and that simulated precipitation variables failed to reproduce extreme events accurately. Nevertheless, a greater confidence remains in downscaled temperatures variables for the area. GCMs performed differently for temperature and precipitation as well as for the different test. In general, this study shows that statistical downscaling is able to simulate with accuracy temperature variables. More inhomogeneities are detected for precipitation variables. This first attempt to test uncertainties of statistical downscaling techniques in the heterogeneous arid central Andes contributes therefore to an improvement of the quality of predictions of climate impact studies in this area.  相似文献   

3.
A statistical downscaling method (SDSM) was evaluated by simultaneously downscaling air temperature, evaporation, and precipitation in Haihe River basin, China. The data used for evaluation were large-scale atmospheric data encompassing daily NCEP/NCAR reanalysis data and the daily mean climate model results for scenarios A2 and B2 of the HadCM3 model. Selected as climate variables for downscaling were measured daily mean air temperature, pan evaporation, and precipitation data (1961–2000) from 11 weather stations in the Haihe River basin. The results obtained from SDSM showed that: (1) the pattern of change in and numerical values of the climate variables can be reasonably simulated, with the coefficients of determination between observed and downscaled mean temperature, pan evaporation, and precipitation being 99%, 93%, and 73%, respectively; (2) systematic errors existed in simulating extreme events, but the results were acceptable for practical applications; and (3) the mean air temperature would increase by about 0.7°C during 2011~2040; the total annual precipitation would decrease by about 7% in A2 scenario but increase by about 4% in B2 scenario; and there were no apparent changes in pan evaporation. It was concluded that in the next 30 years, climate would be warmer and drier, extreme events could be more intense, and autumn might be the most distinct season among all the changes.  相似文献   

4.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   

5.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

6.
The resolution of General Circulation Models (GCMs) is too coarse for climate change impact studies at the catchment or site-specific scales. To overcome this problem, both dynamical and statistical downscaling methods have been developed. Each downscaling method has its advantages and drawbacks, which have been described in great detail in the literature. This paper evaluates the improvement in statistical downscaling (SD) predictive power when using predictors from a Regional Climate Model (RCM) over a GCM for downscaling site-specific precipitation. Our approach uses mixed downscaling, combining both dynamic and statistical methods. Precipitation, a critical element of hydrology studies that is also much more difficult to downscale than temperature, is the only variable evaluated in this study. The SD method selected here uses a stepwise linear regression approach for precipitation quantity and occurrence (similar to the well-known Statistical Downscaling Model (SDSM) and called SDSM-like herein). In addition, a discriminant analysis (DA) was tested to generate precipitation occurrence, and a weather typing approach was used to derive statistical relationships based on weather types, and not only on a seasonal basis as is usually done. The existing data record was separated into a calibration and validation periods. To compare the relative efficiency of the SD approaches, relationships were derived at the same sites using the same predictors at a 300km scale (the National Center for Environmental Prediction (NCEP) reanalysis) and at a 45km scale with data from the limited-area Canadian Regional Climate Model (CRCM) driven by NCEP data at its boundaries. Predictably, using CRCM variables as predictors rather than NCEP data resulted in a much-improved explained variance for precipitation, although it was always less than 50?% overall. For precipitation occurrence, the SDSM-like model slightly overestimated the frequencies of wet and dry periods, while these were well-replicated by the DA-based model. Both the SDSM-like and DA-based models reproduced the percentage of wet days, but the wet and dry statuses for each day were poorly downscaled by both approaches. Overall, precipitation occurrence downscaled by the DA-based model was much better than that predicted by the SDSM-like model. Despite the added complexity, the weather typing approach was not better at downscaling precipitation than approaches without classification. Overall, despite significant improvements in precipitation occurrence prediction by the DA scheme, and even going to finer scales predictors, the SD approach tested here still explained less than 50?% of the total precipitation variance. While going to even smaller scale predictors (10–15?km) might improve results even more, such smaller scales would basically transform the direct outputs of climate models into impact models, thus negating the need for statistical downscaling approaches.  相似文献   

7.
Joint variable spatial downscaling   总被引:1,自引:0,他引:1  
Joint Variable Spatial Downscaling (JVSD), a new statistical technique for downscaling gridded climatic variables, is developed to generate high resolution gridded datasets for regional watershed modeling and assessments. The proposed approach differs from previous statistical downscaling methods in that multiple climatic variables are downscaled simultaneously and consistently to produce realistic climate projections. In the bias correction step, JVSD uses a differencing process to create stationary joint cumulative frequency statistics of the variables being downscaled. The functional relationship between these statistics and those of the historical observation period is subsequently used to remove GCM bias. The original variables are recovered through summation of bias corrected differenced sequences. In the spatial disaggregation step, JVSD uses a historical analogue approach, with historical analogues identified simultaneously for all atmospheric fields and over all areas of the basin under study. Analysis and comparisons are performed for 20th Century Climate in Coupled Models (20C3M), broadly available for most GCMs. The results show that the proposed downscaling method is able to reproduce the sub-grid climatic features as well as their temporal/spatial variability in the historical periods. Comparisons are also performed for precipitation and temperature with other statistical and dynamic downscaling methods over the southeastern US and show that JVSD performs favorably. The downscaled sequences are used to assess the implications of GCM scenarios for the Apalachicola-Chattahoochee-Flint river basin as part of a comprehensive climate change impact assessment.  相似文献   

8.
21世纪黄河流域上中游地区气候变化趋势分析   总被引:10,自引:0,他引:10  
 气候变化预估常用的全球气候模式(GCM)难以提供区域或更小尺度上可靠的逐日气候要素序列,针对这一问题,应用统计降尺度模型(statistical downscaling model,SDSM)将HadCM3的模拟数据(包括A2、B2两种情景)处理为具有较高可信度的逐日站点序列。以1961-1990年为基准期,分析了21世纪黄河流域上中游地区未来最高气温、最低气温与年降水量的变化。在A2、B2两种气候变化情景下,日最高气温、日最低气温均呈升高趋势;但A2的变化较显著,日最高气温的升高趋势在景泰站最明显,日最低气温的升高趋势在河曲站最显著。流域平均的年降水量变化范围为-18.2%~13.3%。A2情景下降水量增加和减少的面积基本相等,宝鸡站降水量增加最多;B2情景下大部分区域降水减少,西峰镇降水量减少最显著。  相似文献   

9.
21世纪黄河流域上中游地区气候变化趋势分析   总被引:2,自引:0,他引:2  
气候变化预估常用的全球气候模式(GCM)难以提供区域或更小尺度上可靠的逐日气候要素序列,针对这一问题,应用统计降尺度模型(statistical downscaling model,SDSM)将HadCM3的模拟数据(包括A2、B2两种情景)处理为具有较高可信度的逐日站点序列。以1961-1990年为基准期,分析了21世纪黄河流域上中游地区未来最高气温、最低气温与年降水量的变化。在A2、B2两种气候变化情景下,日最高气温、日最低气温均呈升高趋势;但A2的变化较显著,日最高气温的升高趋势在景泰站最明显,日最低气温的升高趋势在河曲站最显著。流域平均的年降水量变化范围为-18.2%~13.3%。A2情景下降水量增加和减少的面积基本相等,宝鸡站降水量增加最多;B2情景下大部分区域降水减少,西峰镇降水量减少最显著。  相似文献   

10.
As the debate on potential climate change continues, it is becoming increasingly clear that the main concerns to the general public are the potential impacts of a change in the climate on societal and biophysical systems. In order to address these concerns researchers need realistic, plausible scenarios of climate change suitable for use in impacts analysis. It is the purpose of this paper to present a downscaling method useful for developing these types of scenarios that are grounded in both General Circulation Model simulations of climate change, and in situ station data. Free atmosphere variables for four gridpoints over the Missouri, Iowa, Nebraska, Kansas (MINK) region from both control and transient simulations from the GFDL General Circulation Model were used with thirty years of nearby station data to generate surface maximum and minimum air temperatures and precipitation. The free atmosphere variables were first subject to a principal components analysis with the principal component (PC) scores used in a multiple regression to relate the upper-air variables to surface temperature and precipitation. Coefficients from the regression on station data were then used with PC scores from the model simulations to generate maximum and minimum temperature and precipitation. The statistical distributions of the downscaled temperatures and precipitation for the control run are compared with those from the observed station data. Results for the transient run are then examined. Lastly, annual time series of temperature for the downscaling results show less warming over the period of the transient simulation than the time series produced directly from the model.  相似文献   

11.
Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screening procedure is used for selecting the skilful PCs as predictors used in the regression equation. The predictors include temperature at 850 hPa (7), the combination of sea-level pressure and temperature at 850 hPa (P+T) and the combination of geo-potential height and temperature at 850 hPa (H+T). The downscaling procedure is tested with the three predictors over three predictor domains. The optimum statistical model is obtained for each station and month by finding the predictor and predictor domain corresponding to the highest correlation. Finally, the optimum statistical downscaling models are applied to the Hadley Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios to construct local future temperature change scenarios for each station and month, The results show that (1) statistical downscaling produces less warming than the HadCM3 output itself; (2) the downscaled annual cycles of temperature differ from the HadCM3 output, but are similar to the observation; (3) the downscaled temperature scenarios show more warming in the north than in the south; (4) the downscaled temperature scenarios vary with emission scenarios, and the A2 scenario produces more warming than the B2, especially in the north of China.  相似文献   

12.
Although representation of hydrology is included in all regional climate models (RCMs), the utility of hydrological results from RCMs varies considerably from model to model. Studies to evaluate and compare the hydrological components of a suite of RCMs and their use in assessing hydrological impacts from future climate change were carried out over Europe. This included using different methods to transfer RCM runoff directly to river discharge and coupling different RCMs to offline hydrological models using different methods to transfer the climate change signal between models. The work focused on drainage areas to the Baltic Basin, the Bothnian Bay Basin and the Rhine Basin. A total of 20 anthropogenic climate change scenario simulations from 11 different RCMs were used. One conclusion is that choice of GCM (global climate model) has a larger impact on projected hydrological change than either selection of emissions scenario or RCM used for downscaling.  相似文献   

13.
Summary Uncertainty analysis is used to make a quantitative evaluation of the reliability of statistically downscaled climate data representing local climate conditions in the northern coastlines of Canada. In this region, most global climate models (GCMs) have inherent weaknesses to adequately simulate the climate regime due to difficulty in resolving strong land/sea discontinuities or heterogeneous land cover. The performance of the multiple regression-based statistical downscaling model in reproducing the observed daily minimum/maximum temperature, and precipitation for a reference period (1961–1990) is evaluated using climate predictors derived from NCEP reanalysis data and those simulated by two coupled GCMs (the Canadian CGCM2 and the British HadCM3). The Wilcoxon Signed Rank test and bootstrap confidence-interval estimation techniques are used to perform uncertainty analysis on the downscaled meteorological variables. The results show that the NCEP-driven downscaling results mostly reproduced the mean and variability of the observed climate very well. Temperatures are satisfactorily downscaled from HadCM3 predictors while some of the temperatures downscaled from CGCM2 predictors are statistically significantly different from the observed. The uncertainty in precipitation downscaled with CGCM2 predictors is comparable to the ones downscaled from HadCM3. In general, all downscaling results reveal that the regression-based statistical downscaling method driven by accurate GCM predictors is able to reproduce the climate regime over these highly heterogeneous coastline areas of northern Canada. The study also shows the applicability of uncertainty analysis techniques in evaluating the reliability of the downscaled data for climate scenarios development. Authors’ addresses: Dr. Yonas B. Dibike, NSERC Research Fellow, OURANOS Consortium, 550 Sherbrooke Street West, 19th Floor, Montreal (QC) H3A 1B9, Canada; Philippe Gachon, Adaptation and Impact Research Division (AIRD), Atmospheric Science and Technology Directorate, Environment Canada at Ouranos, Montreal (QC), Canada; André St-Hilaire and Taha B. M. J. Ouarda, Institut National de la Recherche Scientifique Centre Eau, Terre & Environnement (INRS-ETE), University of Québec, 490 Rue de La Couronne, Québec (QC) G1K 9A9, Canada; Van T.-V. Nguyen, Department of Civil Engineering and Applied Mechanics, McGill University, 817 Sherbrooke Street West, Montreal (QC) H3A 2K6, Canada.  相似文献   

14.
The current study examines the recently proposed “bias correction and stochastic analogues” (BCSA) statistical spatial downscaling technique and attempts to improve it by conditioning coarse resolution data when generating replicates. While the BCSA method reproduces the statistical features of the observed fine data, this existing model does not replicate the observed coarse spatial pattern, and subsequently, the cross-correlation between the observed coarse data and downscaled fine data with the model cannot be preserved. To address the dissimilarity between the BCSA downscaled data and observed fine data, a new statistical spatial downscaling method, “conditional stochastic simulation with bias correction” (BCCS), which employs the conditional multivariate distribution and principal component analysis, is proposed. Gridded observed climate data of mean daily precipitation (mm/day) covering a month at 1/8° for a fine resolution and at 1° for a coarse resolution over Florida for the current and future periods were used to verify and cross-validate the proposed technique. The observed coarse and fine data cover the 50-year period from 1950 to1999, and the future RCP4.5 and RCP8.5 climate scenarios cover the 100-year period from 2000 to 2099. The verification and cross-validation results show that the proposed BCCS downscaling method serves as an effective alternative means of downscaling monthly precipitation levels to assess climate change effects on hydrological variables. The RCP4.5 and RCP8.5 GCM scenarios are successfully downscaled.  相似文献   

15.
使用NASA/NCAR有限区域大气环流模型FvGCM结果驱动高分辨率区域气候模式RegCM3 (20 km),进行1961~1990年当代气候模拟(控制试验)和2071~2100年IPCC A2排放情景下未来气候模拟(A2情景模拟试验)。将RegCM3径流模拟结果同大尺度汇流模型LRM [分辨率0.25°(纬度)×0.25°(经度)]相连接,模拟预估未来气候变化对我国黄河流域水文过程的影响。结果表明:相对于当代气候,未来黄河流域呈现气温升高、降水增加(夏季7~8月降水减少)和蒸发增大的趋势,且空间分布极不均匀,造成河川径流在5~10月减少,加剧流域夏季的水资源短缺;未来气温升高使得融雪径流增加,可能导致更早和更大的春季径流,使径流过程发生季节性迁移,引起黄河流域水资源年内分配发生变化。  相似文献   

16.
Hydrological modeling for climate-change impact assessment implies using meteorological variables simulated by global climate models (GCMs). Due to mismatching scales, coarse-resolution GCM output cannot be used directly for hydrological impact studies but rather needs to be downscaled. In this study, we investigated the variability of seasonal streamflow and flood-peak projections caused by the use of three statistical approaches to downscale precipitation from two GCMs for a meso-scale catchment in southeastern Sweden: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). The obtained higher-resolution precipitation values were then used to simulate daily streamflow for a control period (1961–1990) and for two future emission scenarios (2071–2100) with the precipitation-streamflow model HBV. The choice of downscaled precipitation time series had a major impact on the streamflow simulations, which was directly related to the ability of the downscaling approaches to reproduce observed precipitation. Although SDSM was considered to be most suitable for downscaling precipitation in the studied river basin, we highlighted the importance of an ensemble approach. The climate and streamflow change signals indicated that the current flow regime with a snowmelt-driven spring flood in April will likely change to a flow regime that is rather dominated by large winter streamflows. Spring flood events are expected to decrease considerably and occur earlier, whereas autumn flood peaks are projected to increase slightly. The simulations demonstrated that projections of future streamflow regimes are highly variable and can even partly point towards different directions.  相似文献   

17.
The effect of climate change on wildfires constitutes a serious concern in fire-prone regions with complex fire behavior such as the Mediterranean. The coarse resolution of future climate projections produced by General Circulation Models (GCMs) prevents their direct use in local climate change studies. Statistical downscaling techniques bridge this gap using empirical models that link the synoptic-scale variables from GCMs to the local variables of interest (using e.g. data from meteorological stations). In this paper, we investigate the application of statistical downscaling methods in the context of wildfire research, focusing in the Canadian Fire Weather Index (FWI), one of the most popular fire danger indices. We target on the Iberian Peninsula and Greece and use historical observations of the FWI meteorological drivers (temperature, humidity, wind and precipitation) in several local stations. In particular, we analyze the performance of the analog method, which is a convenient first choice for this problem since it guarantees physical and spatial consistency of the downscaled variables, regardless of their different statistical properties. First we validate the method in perfect model conditions using ERA-Interim reanalysis data. Overall, not all variables are downscaled with the same accuracy, with the poorest results (with spatially averaged daily correlations below 0.5) obtained for wind, followed by precipitation. Consequently, those FWI components mostly relying on those parameters exhibit the poorest results. However, those deficiencies are compensated in the resulting FWI values due to the overall high performance of temperature and relative humidity. Then, we check the suitability of the method to downscale control projections (20C3M scenario) from a single GCM (the ECHAM5 model) and compute the downscaled future fire danger projections for the transient A1B scenario. In order to detect problems due to non-stationarities related to climate change, we compare the results with those obtained with a Regional Climate Model (RCM) driven by the same GCM. Although both statistical and dynamical projections exhibit a similar pattern of risk increment in the first half of the 21st century, they diverge during the second half of the century. As a conclusion, we advocate caution in the use of projections for this last period, regardless of the regionalization technique applied.  相似文献   

18.
Six approaches for downscaling climate model outputs for use in hydrologic simulation were evaluated, with particular emphasis on each method's ability to produce precipitation and other variables used to drive a macroscale hydrology model applied at much higher spatial resolution than the climate model. Comparisons were made on the basis of a twenty-year retrospective (1975–1995) climate simulation produced by the NCAR-DOE Parallel ClimateModel (PCM), and the implications of the comparison for a future(2040–2060) PCM climate scenario were also explored. The six approaches were made up of three relatively simple statistical downscaling methods – linear interpolation (LI), spatial disaggregation (SD), and bias-correction and spatial disaggregation (BCSD) – each applied to both PCM output directly(at T42 spatial resolution), and after dynamical downscaling via a Regional Climate Model (RCM – at 1/2-degree spatial resolution), for downscaling the climate model outputs to the 1/8-degree spatial resolution of the hydrological model. For the retrospective climate simulation, results were compared to an observed gridded climatology of temperature and precipitation, and gridded hydrologic variables resulting from forcing the hydrologic model with observations. The most significant findings are that the BCSD method was successful in reproducing the main features of the observed hydrometeorology from the retrospective climate simulation, when applied to both PCM and RCM outputs. Linear interpolation produced better results using RCM output than PCM output, but both methods (PCM-LI and RCM-LI) lead to unacceptably biased hydrologic simulations. Spatial disaggregation of the PCM output produced results similar to those achieved with the RCM interpolated output; nonetheless, neither PCM nor RCM output was useful for hydrologic simulation purposes without a bias-correction step. For the future climate scenario, only the BCSD-method (using PCM or RCM) was able to produce hydrologically plausible results. With the BCSD method, the RCM-derived hydrology was more sensitive to climate change than the PCM-derived hydrology.  相似文献   

19.
This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.  相似文献   

20.
There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号