首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 193 毫秒
1.
日平均计算方法对气温统计值的影响   总被引:3,自引:0,他引:3  
为了弄清不同日平均计算方法对气温统计值的影响,利用陕西6个基准站的定时气温资料分别进行24次观测与4次观测,以及4次与3次观测值计算所得日平均气温计算值的差异分析,并对1961-2010年的3次、4次、24次计算的年平均气温序列进行均一性的惩罚最大F检验(PMFT).结果表明:24次气温定时值计算的日平均气温均值高于4次值,平均差值为0.13℃,标准差为0.39℃,两者差值在秋季较大.4次比3次日平均气温值平均偏低0.14℃,标准差为0.85℃,一年中,夏季差值最大.不同次数的日平均气温计算方法可引起月、年平均气温值0.2℃甚至以上的升降.24次气温值的使用可以使单站的气温增暖速率提高0.03~0.04℃/10a.但日平均气温计算方法的改变不会造成气温序列的非均一.  相似文献   

2.
本文针对天山北坡呼图壁、精河以及阿勒泰地区的吉木乃3个气象站迁址前后的观测资料进行对比分析,利用旧址20a(1997—2017年)气温数据和新址3—5a(2013—2017年)气温观测值作对比分析、相关性分析及T检验,结果表明:3个气象站新旧两站同期观测所得的气温资料具有极高的相关性;从总体趋势上看,新址观测气温的3—5a平均值与旧址20a平均值对比,平均气温月度值总体契合度较高;迁址前后新旧两址同期观测平均气温对比,冬季新址低于旧址,夏秋两季新址高于旧址,且个别月份存在显著差异。最后,采用一元线性回归法,按照月度将新址3—5a平均值订正到旧址20a平均值,对订正值进行更严格的SPSS方法T检验,订正后的平均气温资料均一性显著提高。  相似文献   

3.
不同时间分辨率对气象要素月平均值统计的影响   总被引:3,自引:1,他引:2       下载免费PDF全文
孙化南 《应用气象学报》2004,15(Z1):134-141
通过我国12个国家基准气候站建站至2000年的气压、气温、相对湿度、风速每日4次与24次定时观测资料月平均值的差值、差值平均值、标准差的对比分析,研究不同时间分辨率统计的资料序列的均一性;在此基础上,对全国所有基准站建站至2000年气温历年月平均值进行统计,绘制了全国基准站建站至2000年气温4次与24次定时累年月平均值差值的平均值分布图,并做了初步分析.结果表明,采用两种不同时间分辨率统计气象要素月平均值会出现统计误差,气压、相对湿度、风速4次与24次定时观测资料月平均值偏差在观测精度之内,气温的差值超过了观测精度.我国绝大部分地区的气温4次定时观测资料要比24次观测资料统计的月平均值偏小0.1~0.3 ℃.在气候分析和气候变化研究中,必须考虑因不同时间分辨率统计气温月平均值引起的统计误差,排除非气候原因造成的影响.  相似文献   

4.
讨论日本列岛及韩国半岛地区,重点是具有东亚地区气候特征的气候系统变化,目的是了解水稻产量变化的地区性及气温偏差对产量的影响。采用资料库中各观测点逐年气象观测资料,求出韩国月平均气温的半年值。韩国国内观测点共有70多个,从中选出分布大致均匀的观测点16个,平均了各地各月的月平均气温作为代表韩国的月平均气温。由于地点不同观测年份也不同,所以平均值统计时间为1976~1995年,计算平均值时采用的地点(图略)。就其对水稻产量的影响来说,韩国和日本几乎同时出现。在异常气候条件下预测日本、韩国水稻产量的方法@杨晓丽$黑龙江省气象…  相似文献   

5.
国家基准站自动与人工气象观测值差异评估   总被引:1,自引:0,他引:1  
赵煜飞  周自江  张强 《气象科技》2011,39(4):462-467
分析了自动24次与人工24次观测日平均值间以及人工24次与4次观测日平均值间的差异.评估中涉及到的统计方法主要是两组样本平均值显著差异的t检验.研究表明:人工24次与4次观测差异分析中,近半数台站相对湿度存在显著差异;气温、气压、2 min风速存在显著差异的台站分别为1.5%、0%和6.9%.并且,气温和气压差值场显示...  相似文献   

6.
增城基难站,自1990年1月1日开始执行每日24次气候观测。通过对七年资料的统计,发现观测项目中,压、温、湿三项,24次观测值与4次观测值相差甚微,本文以年平均值为论证依据,作以下分析。从表1可以看出,压、温、湿记录日测24次与日测4次的结果有如下特点:(1)24次观测值与4次观测值存在很小的偏差。其中24次值气压、气温偏高,相对湿度偏小。(2)气压资料:有六年完全相同,相同率为86%。略有偏差仅1996年一年,该年偏差值为0.1hPa,累年平均偏差幅度为0.0。因此,气压资料几乎没有差异。(3)气温资料:七年均略有偏差,差值均…  相似文献   

7.
针对研究全国近百年平均气温长期变化的实际需要,利用603个测站1961—2002年气温观测资料,比较分析了最高最低平均气温距平序列和4次观测记录平均气温距平序列的差异,讨论了最高、最低气温变化趋势。结果表明:两种统计方法得到的平均气温距平序列及增温速率的差异均不明显,在一定条件下两者可以互相替换。此外,最高、最低气温变化普遍存在不对称现象,且可分为4种类型,这种不对称性对平均气温变化速率并没有明确一致的影响。  相似文献   

8.
利用2016年(站址迁移对比期)萧山国家一般气象站新、旧址的气温、降水、相对湿度、风向、风速等气象要素逐日观测值,采用差值标准差、降水量累计相对差值、风向相符率、显著性检验等统计方法,对以上气象要素进行对比分析,结果表明:1)新址的平均气温、最高气温、最低气温的年平均值均低于旧址,差值分别为-0.4℃、-0.7℃、-0.2℃,新、旧址的最高气温差异最大;新、旧址的平均气温、最高气温、最低气温在春、夏季节比较接近,而在秋、冬季节相差较大。2)新址相对湿度大于旧址,差值年平均为3%,新、旧址相对湿度的变化趋势基本一致,其中9—12月新旧址的相对湿度差值较大。3)新址的年降水量比旧址偏多110.3 mm,雨日比旧址偏少22 d,年降水量累计相对差值为7%,4—6月和9—11月期间新旧址的降水量观测数据差异较大。4)新址平均风速、最大风速、极大风速均比旧址偏大,差值年平均分别为2.0 m/s、3.6 m/s、3.5 m/s,新、旧址在春、夏季的风速相差较小,秋、冬季相差大,新、旧址在大风日数和静风出现次数上一致性较差;全年风向相符率为42.5%,两站址风向一致性较差。5)平均气温、降水量和平均相对湿度月(年)平均值与旧址近20 a的观测数据差异不显著,平均风速差异显著。分析认为,测站环境、海拔的不同以及小气候的影响,是造成以上要素差异的主要原因。  相似文献   

9.
基于青藏高原61个区域级气象站的气温降水地面观测数据,对CMFD(中国区域高分辨率地区驱动数据集)、CRA(全球大气和陆面再分析资料)以及MERRA-2(大气再分析资料)数据集的日、月、季节以及年气温、降水数据进行精度对比分析,评估3套数据的准确性以及在青藏高原的适用性,结果表明:(1)3套年平均气温资料70%的RMSE<4℃,其中CMFD拟合精度最高,2/3的站点RMSE<2℃;CMFD和CRA对年降水的拟合精度较高,MERRA-2低估了高原中部的年降水量。(2)CMFD对季节平均气温整体拟合结果最好,尤其是气温较高的夏季和秋季;CRA在降水较为集中的夏季和秋季拟合结果最接近观测值,而在降水较少的春季和冬季CMFD拟合结果最好。(3)CMFD对月平均气温拟合结果整体上最接近观测值;月降水拟合结果与季节降水结果相似,CMFD对降水偏少月份拟合结果较好,CRA在降水偏多月份最接近观测值。(4)对61个区域站进行日尺度平均气温和降水数据精度评估,发现CMFD和CRA拟合效果最好,CMFD拟合趋势一致性好。  相似文献   

10.
自动气象站温湿度测量数据与人工观测数据对比分析   总被引:3,自引:0,他引:3  
李芸  王新堂  王新 《山东气象》2006,26(1):72-74
利用2003年1月至2004年12月济南自动气象站和人工观测的逐日定时地面气温、湿度资料,进行统计对比分析并探讨两者差异的形成原因。结果表明:对于各观测时次和日平均地面气温,自动站测值高于人工观测值,各观测时次和日平均地面湿度自动站测值低于人工观测值;月极端最高和最低气温、湿度差异与日平均值差异基本相当。  相似文献   

11.
T639模式预报系统误差统计和订正方法研究   总被引:4,自引:2,他引:2  
邱学兴  王东勇  陈宝峰 《气象》2012,38(5):526-532
通过统计2009—2010年T639模式500 hPa高度、850 hPa温度和2 m温度的1~10天预报场的平均误差发现,T639模式的这些气象要素预报都存在明显系统误差,且系统误差随着预报时效的增加而增加。利用"递减平均法"尝试订正其预报系统误差,订正结果表明:该订正方法总体表现为正的订正技巧,但订正能力随着预报时效的增加而下降;东亚地区的系统误差小于整个北半球,"递减平均法"的订正能力总体小于整个北半球。对比夏、冬半年订正效果发现:对于500 hPa位势高度和850 hPa温度的预报场,冬半年和夏半年订正技巧相当;对于地面2 m温度预报场,冬半年订正能力明显高于夏半年。不同权重系数试验表明:对于500 hPa高度场,权重系数约取0.06时,订正效果较好,而对于850 hPa和2 m温度场,权重系数约取0.1时,订正效果最佳。  相似文献   

12.
Regional climate models (RCMs) participating in the Coordinated Regional Downscaling Experiment (CORDEX) have been widely used for providing detailed climate change information for specific regions under different emissions scenarios. This study assesses the effects of three common bias correction methods and two multi-model averaging methods in calibrating historical (1980?2005) temperature simulations over East Asia. Future (2006?49) temperature trends under the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios are projected based on the optimal bias correction and ensemble averaging method. Results show the following: (1) The driving global climate model and RCMs can capture the spatial pattern of annual average temperature but with cold biases over most regions, especially in the Tibetan Plateau region. (2) All bias correction methods can significantly reduce the simulation biases. The quantile mapping method outperforms other bias correction methods in all RCMs, with a maximum relative decrease in root-mean-square error for five RCMs reaching 59.8% (HadGEM3-RA), 63.2% (MM5), 51.3% (RegCM), 80.7% (YSU-RCM) and 62.0% (WRF). (3) The Bayesian model averaging (BMA) method outperforms the simple multi-model averaging (SMA) method in narrowing the uncertainty of bias-corrected results. For the spatial correlation coefficient, the improvement rate of the BMA method ranges from 2% to 31% over the 10 subregions, when compared with individual RCMs. (4) For temperature projections, the warming is significant, ranging from 1.2°C to 3.5°C across the whole domain under the RCP8.5 scenario. (5) The quantile mapping method reduces the uncertainty over all subregions by between 66% and 94%.  相似文献   

13.
This study surveys the most recent projections of future climate change provided by 20 Atmospheric-Ocean General Circulation Models (AOGCMs) participating in the Coupled Model Intercomparison Project 3 (CMIP3) with focus on the Italian region and in particular on the Italian Greater Alpine Region (GAR). We analyze historical and future simulations of monthly-mean surface air temperature (T) and total precipitation (P). We first compare simulated T and P from the AOGCMs with observations over Italy for the period 1951–2000, using bias indices as a metric for estimating the performance of each model. Using these bias indices and different ensemble averaging methods, we construct ensemble mean projections of future climate change over these regions under three different IPCC emission scenarios (A2, A1B, and B1). We find that the emissions pathway chosen has a greater impact on future simulated climate than the criteria used to obtain the ensemble means. Across all averaging methods and emission scenarios, the models project annual mean increase in T of 2–4°C over the period 1990–2100, with more pronounced increases in summer and warming of similar magnitude at high and low elevations areas (according to a threshold of 400 m). The models project decreases in annual-mean P over this same time period both over the Italian and GAR regions. This decrease is more pronounced over Italy, since a small increase in precipitation over the GAR is projected in the winter season.  相似文献   

14.
利用滑动平均法和递减平均法对2013—2014年江西省1 216个乡镇站点ECMWF集合预报2 m温度集合平均产品进行误差订正试验。结果表明:1)滑动平均法和递减平均法对江西地区乡镇温度预报为正的订正效果,订正后的预报准确率大于订正前,并且递减平均法的订正效果要略优于滑动平均法。2)误差订正方法对各时段温度TRMSE的订正能力都随预报时效的增加而减小,对高温预报准确率的提高明显大于低温,对山区预报准确率的提高大于平原,对有规律的预报误差的站点订正效果较好。3)随季节和站点变化的自适应递减平均法的预报结果较各季节和全年定常最优订正系数好,订正方法对秋季温度预报订正能力最强,春季最差。  相似文献   

15.
陈英  谢万锈  徐彬 《干旱气象》2013,(3):627-632
从自动站与人工站观测方式的区别人手,对民勤国家基准气候站观测的数据进行整理与对比分析得出:(1)2种观测方式数据序列中,本站气压2a平均差值为0.1hPa,差值变幅在~0.3~0.5hPa;气温2a平均差值-0.1℃,差值变幅在-0.1~0.0℃之间;相对湿度2a平均差值为-1%,差值变幅在一4%~2%之间;2min平均风速2a平均差值为0.5m/s,差值变幅在0.3~0.7m/s之间,10min平均风速2a平均差值为0.4m/s,差值变幅在0.4~0.5m/s之间;地面温度2a平均差值为0.6℃,差值变幅在0.0~1.2℃之间。本站气压、气温、相对湿度、风向风速、地温差值虽然不固定,但对历史资料的序列连续性影响不显著;(2)各要素中差值最大的是地面最高温度,2a平均差值为1.8oC,差值变幅在-1.7~4.3℃之间;(3)自动站的观测结果比人工观测更真实、准确、科学,更接近大气中的实际情况。  相似文献   

16.
雷电定位系统与人工观测雷暴日数统计比较   总被引:3,自引:0,他引:3       下载免费PDF全文
为了利用雷电定位系统 (lightning location system,LLS) 资料统计人工观测雷暴日数,采用湖北省2007—2012年LLS监测资料,选取25个气象站为圆心,统计其不同监测半径 (r) 圆区域内LLS监测的雷电日数,并与人工观测雷暴日数进行比较。结果表明:r≤7 km时,LLS监测平均年雷电日数小于人工观测平均年雷暴日数;r≥8 km时, LLS监测平均年雷电日数大于人工观测平均年雷暴日数;r=22 km圆区域内年平均雷电日数可替代最大年雷暴日数。根据r=7 km,r=8 km圆区域内LLS监测的年雷电日数、年平均地闪密度资料,分别采用直接替代法、地闪密度法和该文提出的二元法计算年雷暴日数,结果显示:二元法效果最好。二元法计算的2007—2012年25个站平均年雷暴日数与人工观测相等,平均差异为7.4%;二元法计算的2013年年雷暴日数与人工观测相差0.8 d,平均差异为12.3%。  相似文献   

17.
硫酸盐气溶胶直接辐射效应在线与离线模拟方法的比较   总被引:3,自引:0,他引:3  
利用区域气候模式RegCM 2与大气化学模式连接的模拟系统 ,比较了硫酸盐气溶胶辐射强迫的在线、离线模拟方法的硫酸盐柱含量、大气顶直接辐射强迫及地表温度响应。发现 :在线与离线模拟方法得到的硫酸盐柱含量、有无反馈大气顶直接辐射强迫和地表温度响应在许多地区有很大差异 ,这种差异在较小区域平均的尺度上更显著 ,在全区域平均尺度上也较为明显 ,是不能被忽略的 ;结果显示从硫酸盐含量到辐射强迫和地表温度响应逐渐加大的差异 ,说明硫酸盐气溶胶的辐射强迫与模拟方法有关 ,显示出较大的不确定性。  相似文献   

18.
周洋  蔡蕊  陆杰英 《广东气象》2014,36(6):44-49
利用广州市区和增城市1982—2013年的气象观测资料,应用数据对比和相关分析的方法,从年际和季节变化两个角度,分析了两地气象要素的差异性;运用拉格朗日模式,模拟了2个个例的水汽来源,分析两站降水量差异性的可能原因。结果表明:城市热岛效应导致广州市区温度高于增城市,而相对湿度低于增城市;城市冠层作用使得广州市区风速明显低于增城市。差异性存在明显的季节不同,温度和相对湿度在秋季差异最明显,风速在冬季差异最明显,而降水量在夏季差异最明显。通过相关性分析得到两站的温度以及相对湿度的相关系数达到0.99和0.89,可利用经验公式联系两地的预报结果。HYSPLIT模式模拟水汽来源表明,不同的水汽来源可以导致广州市区和增城市降水先后顺序以及降水量的差异。  相似文献   

19.
Compared are the estimates or regional changes in temperature and precipitation on the territory of Russia for two methods of the spatial averaging of meteorological station data, one of which is adapted to the sparse observational network and takes account of the station weights proportional to the area of their influence. Considered are several variants of the zoning with the separation of the different number of regions. Formulated is a criterion of the zoning adequacy to the problem of the revelation and analysis of regional climate changes. Estimated is the representativeness of the network of observations of temperature and precipitation for separate regions. Presented are the estimates of regional trends of air temperature and precipitation for the century interval and for the recent decades obtained on the basis of the full archive of available data for the zoning attached to the administrative division of the Russian Federation into the federal districts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号