首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1951—2006年汕头雾变化的气候特征及影响因素分析   总被引:4,自引:1,他引:3       下载免费PDF全文
利用1951—2006年汕头气候资料,分析大雾天气的气候变化特征。结果表明:汕头年雾日总体呈明显下降趋势。20世纪90年代以前雾日相对偏多,90年代以后雾日明显偏少;大雾的逐月变化呈1峰1谷的特征,峰值出现在3月,谷值出现在8月;下半夜至翌日上午较易出现大雾。起雾时间为04:00—07:00,其中07:00最易起雾,雾消时间为04:00—12:00,09:00—11:00雾最易消散;雾日时静风概率为52%,风速小于等于3 m/s的概率超过95%,不利于近地层空气的水平交换;雾日多伴有逆温层存在且逆温层具有底高较低、厚度较厚、强度较强的特点,不利于近地层空气的上下交换,因而雾日空气质量较差。  相似文献   

2.
利用1960-2009年石河子垦区3个国家级气象站的气象资料,分析大雾天气的气候变化特征。结果表明:石河子垦区年均雾日空间分布特征明显,西北多,东南少,时间分布极不均匀,石河子站雾日呈逐渐减少型,莫索湾站和炮台站呈逐步增多型;石河子垦区雾日在全年的分布状况是春季最多,冬季次之,秋季最少;大雾的逐月变化呈显著季节性特征,集中出现在10-3月,而4-9月,基本无发生;下半夜至翌日上午较易出现大雾,起雾时间为00:00-13:00,其中10:00-12:00最易起雾,雾消时间为14:00-23:00,16:00-22:00雾最易消散;温度在-10~-20℃、相对湿度在91%~100%、风速0~2m/s、风向偏东风和偏南风下石河子雾最易发生。雾天气气候特征及气象条件的分析是预报其发生时间和地点的基础,充分认识其特征和规律是提高雾天预报准确率的前提。  相似文献   

3.
近33a山西不同强度和范围雾日的变化特征及其成因   总被引:1,自引:0,他引:1  
利用1980~2012年山西108站雾观测资料,研究山西不同范围和不同强度雾日的时空分布及变化趋势,在此基础上基于统计分析方法,分析了风力、降水、平均相对湿度等条件的变化对雾日增减趋势的影响。结果表明:(1)山西不同强度雾日都具有西北向东南递增的空间分布特征,长治、晋城、晋中东山以及忻州东部是山西不同强度雾日的多发区;(2)小范围和区域性的雾一年四季均可出现,大范围的雾则主要出现在秋季和初冬季节。大雾一年四季均可出现,浓雾以上天气有显著的季节性变化,强浓雾和特强浓雾主要出现在9~12月,其中以11月为最多;(3)近33 a间,小范围、区域性以及大范围的雾日分别以1.16 d/10 a、0.76 d/10 a和0.61 d/10 a的速率增多。大雾、浓雾和特强浓雾分别以0.36 d/10 a、0.13 d/10 a和0.23 d/10 a的速率增多,强浓雾则以-0.07 d/10 a的速率减少;(4)风速3 m·s-1时,风日数与雾日数为正相关,风速≥5 m·s-1时,风日数与雾日的增减转为反相关,其中对雾日增减趋势影响最明显的是风速≥12 m·s-1的日数;(5)雾日的空间分布与相对湿度的空间分布呈正相关,与大风日的空间分布呈反相关;(6)区域性和大范围的年降水日和日平均相对湿度≥80%日数的增减对年雾日的增减变化影响最显著。  相似文献   

4.
西安城区与郊区风向风速差异分析   总被引:1,自引:0,他引:1       下载免费PDF全文
曹梅  杨珍  王斌 《陕西气象》2016,(2):19-23
利用西安国家一般气象站和泾河国家基本气象站2006—2013年同期风向风速地面观测资料,分析比较了西安城区与郊区风向及风速的差异。结果表明:西安城区的月平均风速均小于郊区,城区比郊区偏小50%左右;两地逐月月平均风速波动趋势基本一致,郊区波动较大,城区较平缓;两地年平均风速均呈缓慢减小趋势,城区比郊区减小趋势明显;郊区极大风速远大于城区;郊区大风日较多,城区仅有1d,郊区出现大风的概率远高于城区。城区和郊区最多风向略有偏差,偏离1~20个方位;城区四季的最多风向均不同,郊区四季的最多风向变化不大;城区极大风风向较为分散,郊区较集中。  相似文献   

5.
利用地面气象观测资料对修水县1954—2017年大雾时间变化特征和2005—2017年大雾出现时的主要预报指标进行了统计分析,此外利用ECMWF预报资料对2014—2017年11月—次年2月预报指标进行了误差分析。结果表明,大雾日数自20世纪90年代起显著减少,平均递减率为0.28 d/a;冬季大雾日数最多,春季次之,夏季最少;大雾出现的次数自02时之后显著增多,08时之后则显著减少。秋末至冬季,大雾出现时2 m相对湿度多大于93%,2 m温度露点差多小于1.2℃,10 m风速多小于1.2 m/s,02时总云量多在0—1成,此外若14时2 m相对湿度小于30%,一般不考虑次日预报大雾天气。在ECMWF细网格预报中,2 m相对湿度经常性预报偏小,而2 m温度露点差和10 m风速则经常性预报偏大,在实际业务工作中,可综合订正方程及误差概率分布等因素得到较为准确的预报指标值。  相似文献   

6.
利用防城港市1965~2008年的大雾观测资料,分析了防城港市大雾空间、时间分布的基本气候特征.结果表明:沿海地区雾多出现在冬春季,上思出现在秋冬季,出现较频繁的时段为4~9时;大雾日数年变化趋势不大,港口和上思呈下降的趋势,平均下降0.29d/a和0.16d/a,防城和东兴呈上升的趋势,平均上升0.2d/a和0.03d/a.当气温为15~24℃、相对湿度94%~99%、风速0~6m·s-1时,有利于大雾的发生发展,温度月变化明显,4站点各月间有1~3℃的温差.  相似文献   

7.
湛江东海岛二月海陆风环流特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
徐峰  王晶  张羽  张书文  黄克鑫 《气象科学》2012,32(4):423-429
利用2011年2月湛江东海岛风廓线雷达资料,系统分析了湛江东海岛2月平均风场特征及海陆风特征,结果表明:2月湛江东海岛150 m高度处以东偏北出现频率最大,在E、ENE和NE三个方位的风向出现频率之和为66.6%,偏西七个方位的风向出现频率之和仅为1%。以SSW方位为界,偏东风与偏西风的出现频率差异明显。各整点的月平均风速1:00—15:00变化较小,均在1 m/s左右波动;15:00—20:00风速及风速波动都较大,最大值出现在16:00时,为2.1 m/s。2011年2月中只有2日与14日两日符合海陆风日条件,两日共同海风时段为13:00—20:00,持续7 h;陆风时段为2:00—7:00,持续5 h。海风平均风速为2.1 m/s,陆风平均风速为0.8 m/s,海风平均风速明显大于陆风风速。海风与陆风环流垂直高度相差甚小,约1.2 km,风速随高度变化趋势均为先增后减;海风最大风速出现在750 m高度处,陆风出现在500 m高度处,500~750 m高度区间海风环流强度明显强于陆风环流。2 km之上为均匀一致的系统性西风环流。  相似文献   

8.
应用常规气象观测资料、能见度仪观测资料,分析1999—2018年锦州地区大雾气候特征及成因。结果表明:锦州地区雾日年总频次多年平均为33次,存在12 a、6 a和3 a的变化周期。锦州地区典型大雾过程主要分为弱低压槽型、雨后弱高压型。大雾存在日变化。雾前T-Td为4—14℃,风速为4 m·s-1以下,偏南风占50%,偏北风占38%,静风占12%;雾发展阶段T-Td为0—4℃,平均风速为2.2 m·s-1,偏南风占58%,偏北风占42%;浓雾阶段T-Td为0—2℃,平均风速为1.9 m·s-1,偏南风占58%,偏北风占42%;雾减弱到消散阶段T-Td逐渐升高,平均风速为3.3 m·s-1,偏北风占58%。大雾期间,均出现逆温和湿层。  相似文献   

9.
利用海南省儋州市1979~2008年常规大雾观测资料,对该市大雾天气发生的频率等主要特征进行了分析,结果表明:儋州市年雾日30a来总体呈明显下降趋势,90年代以后雾日明显偏少;城市热岛效应、气候变暖等因素可能是90年代后儋州市大雾日数明显减少的主要原因;儋州市大雾天气以冬春季发生频率较高,大雾日的月分布呈1峰1谷的特征;相对湿度在81%以上,地表温度在11.0~30.0℃之间,风速小于3 m·s-1时易发生雾.  相似文献   

10.
选取2006—2015年近10 a遵义市14个国家气象站观测资料,分析统计了大雾天气的时空分布,雾日的季节和月频率分布以及区域性大雾年际变化;并通过2015—2017年遵义市市区空气质量指数资料和能见度等地面气象资料,浅析其时间变化特征。结果表明:遵义大雾区主要有西部河谷大雾区、中部偏南大雾区、东部大雾区、北部雾区等4个。遵义市12月—次年1月出现的雾日最多,6—8月出现最少。近10 a区域性大雾天气次数随着年代的增加,总体呈现逐年减少的趋势。遵义秋冬季节空气质量状况不佳,空气中污染颗粒物较多,此时较高的相对湿度有助于形成能见度较差的天气。  相似文献   

11.
青海省东部地区雾特征   总被引:5,自引:3,他引:2  
李周藏 《气象科技》2009,37(2):162-165
利用青海省东部地区6站1977~2006年30年的地面气象观测资料,对该地区雾发生演变的特征进行了统计分析。结果表明,该地区雾的空间分布不均匀,高值中心在门源站,为8.3d/a,年雾日最多达13d;雾存在明显的年、季和日变化特征,由于气候变化的影响,年雾日呈明显的减少趋势,每年4~10月02:00~08:00是雾集中出现的时段;雾存在NNE—NE的主导风向,ESE风和SSW风频率最低,不到1.5%,同时在一1~5℃的温度窗区雾频率最高;除西宁站雾形成时相对湿度临界值为57%外,其它各站形成雾时相对湿度较高,均大于88%。  相似文献   

12.
利用恩施天气雷达风廓线资料,对恩施大雾天气过程中起雾前、持续中和结束时三个阶段的风向风速和粒子层厚度变化进行了详细分析研究.结果表明:(1)辐射雾风廓线特点是起雾前1.8km处偏西风(NW、SW)有扰动,风速不大,粒子层厚度为1.8~3.0km;大雾持续中,风速变小,静风发展,粒子层厚度维持,偶尔到3.4km,粒子活动较弱;大雾结束时,静风或无粒子活动,粒子层厚度大多数仅为1.8km这一层,出现断续现象,粒子活动更弱;(2)平流雾风廓线特点是近地面层1.8km处,起雾前粒子偏南风为主,风速为2~4m/s,偶尔NW、NE,粒子层厚度维持为1.8~3.7km,有时候甚至达到9.1km;持续中风速维持或略有下降,低层到高层有时风向顺转SE->SW粒子层增厚,比较活跃;结束时风速加大1~2m/s,为4~6m/s低层1.8km继续加大1~2m/s,有时厚度增厚明显,有时厚度迅速减小,偶尔有粒子向上传播;(3)雾消散指示性特征是辐射型大雾当低层1.8km处于静风或无粒子活动,1.8km以上无粒子活动或断续活动,比较微弱,大雾维持1小时左右就很快消散;而平流型大雾满足1.8km处风速增加到6m/s以上,当粒子厚度增加明显,雾增大,当厚度迅速减小,雾结束,这2种情况,大雾维持30分钟到1小时左右就结束;还发现恩施这两种大雾天气比较一致的现象,当出现粒子向上传播的现象,预示着大雾天气即将结束.  相似文献   

13.
本文应用1977~2013年乌鲁木齐机场12月~次年(2014年)3月逐时地面观测资料,应用相关气候统计方法探求乌鲁木齐机场雾天气的出现时间及其变化特征,并以大雾集中度(FCD)和大雾集中期(FCP)来表征大雾天气累计出现时间的非均匀性特征,结果表明:⑴1977~2013年,乌鲁木齐机场雾累计出现时间呈明显的上升趋势,大雾的上升速率大于浓雾的上升速率,且大雾天气中浓雾的比率逐年下降;且机场雾的持续时间以低于6h为主;⑵机场雾分为三个阶段:少发期(1977~1991)、调整期(1992~2001)、高发期(2002~2013),且机场雾的突变时间就发生在本世纪00年代初期(2001/2002年);⑶机场大雾累计出现时间和能见度大小有明显的负相关关系,且日变化显著:一天内有两个非常明显的转折时间段,分别为1:00~2:00、和14:00~15:00,即3:00~13:00为一天内易发大雾时间段,14:00~23:00为一天内能见度较好时间段;⑷机场大雾的发生时间相对集中,集中度相对较高。近37a来大雾集中度呈下降趋势,尤其是进入大雾高发期以后,大雾发生次数显著增加,且大雾平均持续时间变化不大,集中度较低;机场大雾集中发生的12月和1月,以周为时间单位计算时,在2002年以前,大雾最多发生在12月第四周;2002以后,大雾最多发生时间开始后移至次年1月份第一周。  相似文献   

14.
利用2015—2017年唐山市空气质量日空气质量指数、小时PM2.5浓度和气象数据,分析了唐山市重污染特征及PM2.5重污染生成、消散气象条件。结果表明:2015—2017年唐山市重污染天数为减少趋势,年平均重污染天数36 d。冬季发生重污染天数最多,秋季次之。重污染天气中首要污染物为PM2.5、PM10和O3,PM2.5为首要污染物占比87%,PM10占比6%,O3占比7%。小时PM2.5浓度与相对湿度、总云量、24 h变温正相关,与风速、气温、风向、1 h降水负相关。冬季相关性最好,其次是秋季和春季。90%PM2.5重污染相对湿度均为50%以上,冬季和秋季高达98%;风速大于4 m·s-1时,有0.7%的PM2.5达到重污染;降水对PM2.5有一定清除作用。升温、湿度增加和负变压有助于污染天气形成,生成过程中平均风速为1.8 m·s-1,主导风向为SW,其次是S、W。降温、湿度下降、正变压、降水有助于污染天气消散,消散过程中平均风速为3.1 m·s-1,主导风向为E,其次是NE、N。各方位3 m·s-1的风具有清除能力,偏北风具有较好清除能力,风速较其他方向风速小。  相似文献   

15.
统计德州、陵县(与德州相距约30 km)观测站2006—2012年逐年16方位风向出现次数、平均风速、最大风速、年最多风向及出现频率发现:2006—2008年期间,德州与陵县在16方位风记录变化趋势相近,年最多风向接近或相同。德州站自2009年开始,NE—NWN方因受建筑物影响,NE、NNE、N、NNW 4个方向年出现次数明显减少、平均风速,最大风速均呈减小趋势,以N最明显,减少77%;同时其相对方向风记录受到不同程度的影响,S出现次数减少最明显;由于空气具有钝体绕流现象,造成E、NW出现回数明显增加,以E最明显;从而导致该站年最多风向发生变化,由原来的S(或SSW)转为E。2009—2012年与2006—2008年比较:N年均出现回数减少79次,平均风速减少0.9 m/s;NNE年均出现回数减少57次,平均风速减少0.8 m/s;NE年均出现回数减少40次,平均风速减少0.9 m/s;NNW年均出现回数减少29次,平均风速减少0.1 m/s。  相似文献   

16.
雷州半岛雾的气候特征及生消机理   总被引:2,自引:0,他引:2  
利用分别位于雷州半岛北部、中部和南部的湛江站59a、雷州站46a和徐闻站42a的气象资料,分析了雷州半岛雾发生的规律及生消机理。结果表明:三站年雾日数变化趋势基本一致,呈"W"状,局部峰值明显升高。三站的年平均雾日数分别为24.7d、30.4d和21.0d。雷州半岛雾日主要出现在每年的1—4月及12月,3月雾日数最多,7月雾日数最少。近10a湛江站夜间雾发生频率为90%;短雾多,持续时间在4h以内的占75%。雾形成的天气形势可分为高压入海型、低压前型、冷锋前型、静止锋前型、鞍形场或均压场型5类,主要是平流雾、锋面雾和辐射雾。3种雾消散的天气形势是新冷空气补充南下、雾滴出现碰并沉降形成小雨或日出后雾滴蒸发。统计雷州半岛三站2000—2009年雾次频数得出,成雾概率最大的气象条件是气温为15~25℃、T-Td≤1.0℃、Δp3在-3.5~-2hPa和1.5~2.5hPa之间、风向为NNE-ESE及风速小于5m/s。L波段雷达探空大雾个例分析表明:雾顶高度在1.5km左右,雾中温度随高度增加而减小;雾中相对湿度大于92%,1.5km之上急剧减小,3km以上保持不变;T-Td为1.2~6.4℃;近地面风速为2~6m/s,风向随高度顺时针旋转,雾中有暖平流。  相似文献   

17.
黄聪敏 《广东气象》2011,33(5):30-32
利用1952 ~2009年连州市的气候资料、各种气象要素场资料以及环流背景场资料,对粤西北地区出现的雾天气进行统计分析.结果表明:该地区的雾日有明显的年代际变化,平均每年雾日为16.5 d,雾季为11月至次年4月;该地区出现的雾多为平流雾,高地气温差、高相对湿度、适宜的风速、逆温层和稳定层结的出叶现都是该地区大雾过程的...  相似文献   

18.
采用引入城市水文过程的WRF/SLUCM方案,以北京2010年7月4—6日高温热浪天气为背景,模拟了绿地灌溉、绿洲效应和人为潜热等水文过程对城市气象环境的影响。结果表明:(1)绿地灌溉、绿洲效应和人为潜热等水文过程可导致北京城区13 ∶00(7月4—6日小时平均,下同)潜热通量升高最多约100 W·m^-2 ,02 ∶00升高最多约15 W·m^-2;感热通量13 ∶00降低最多约80 W·m ^-2;02 ∶00降低最多约5 W·m^-2 。(2)城市水文过程可导致城区13 ∶00相对湿度增加最多约4%,02 ∶00约6%;地表气温13 ∶00降低最多约1.2 ℃,02 ∶00约0.4 ℃。(3)城市水文过程对北京城市热岛强度的减弱效果白天明显好于夜间,且在10 ∶00—14 ∶00出现了强度约0.8 ℃的冷岛效应。(4)水文过程会导致北京城区500 m高度以下白天大气温度最多降低0.5 ℃,相对湿度最多增加3%,但夜间影响较小。由于热对流运动的减弱,城区边界层高度降低约200 m;城区1 km高度以上水平风速增大,低层风速减小。  相似文献   

19.
沈大高速公路雾气候特征与气象要素分析   总被引:8,自引:3,他引:5       下载免费PDF全文
利用1958—2007年沈大高速公路沿线6站雾日资料对沈大高速公路雾的气候特征及气象要素进行分析。结果表明:沿海地区雾日偏多,且总体呈上升趋势,内陆地区雾日偏少,且呈下降趋势。内陆地区雾多出现在秋冬季,沿海地区多出现在夏季。雾多在凌晨至日出前后时段生成,日出后逐渐消散,持续时间多为1—3 h。相对湿度、气温、风速和风向对雾的预报有较好指示意义:当相对湿度在90%—100%时,春季气温为-5—15 ℃、夏季为16—24 ℃、秋季为-3~19℃、内陆冬季为-20~2 ℃,沿海冬季为-7~4 ℃范围内,内陆风速为0—3 m•s-1,沿海风速为0—6 m•s-1,且沿海地区为偏南风时,雾易发生。  相似文献   

20.
为了解榆林机场复杂大雾变化过程中近地层气象要素变化特征,利用常规天气图和AWOS系统采集的气温、气压、风向、风速、能见度等实时资料,利用天气学原理对2011年12月1日榆林机场出现的复杂大雾天气过程进行综合分析。得出相对湿度为91%~95%是榆林机场冬季大雾形成的临界状态,相对湿度95%是榆林机场大雾稳定持续的临界值,机场积雪被清扫的跑道与周围覆盖着厚厚积雪的地表之间存在辐射差异,该差异可能导致浅雾、碎雾发生明显变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号