首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A coupled carbon cycle-climate model is used to compute global atmospheric CO2 and temperature variation that would result from several future CO2 emission scenarios. The model includes temperature and CO2 feedbacks on the terrestrial biosphere, and temperature feedback on the oceanic uptake of CO2. The scenarios used include cases in which fossil fuel CO2 emissions are held constant at the 1986 value or increase by 1% yr–1 until either 2000 or 2020, followed by a gradual transition to a rate of decrease of 1 or 2% yr–1. The climatic effect of increases in non-CO2 trace gases is included, and scenarios are considered in which these gases increase until 2075 or are stabilized once CO2 emission reductions begin. Low and high deforestation scenarios are also considered. In all cases, results are computed for equilibrium climatic sensitivities to CO2 doubling of 2.0 and 4.0 °C.Peak atmospheric CO2 concentrations of 400–500 ppmv and global mean warming after 1980 of 0.6–3.2 °C occur, with maximum rates of global mean warming of 0.2–0.3 °C decade–1. The peak CO2 concentrations in these scenarios are significantly below that commonly regarded as unavoidable; further sensitivity analyses suggest that limiting atmospheric CO2 to as little as 400 ppmv is a credible option.Two factors in the model are important in limiting atmospheric CO2: (1) the airborne fraction falls rapidly once emissions begin to decrease, so that total emissions (fossil fuel + land use-induced) need initially fall to only about half their present value in order to stabilize atmospheric CO2, and (2) changes in rates of deforestation have an immediate and proportional effect on gross emissions from the biosphere, whereas the CO2 sink due to regrowth of forests responds more slowly, so that decreases in the rate of deforestation have a disproportionately large effect on net emission.If fossil fuel emissions were to decrease at 1–2% yr–1 beginning early in the next century, emissions could decrease to the rate of CO2 uptake by the predominantly oceanic sink within 50–100 yrs. Simulation results suggest that if subsequent emission reductions were tied to the rate of CO2 uptake by natural CO2 sinks, these reductions could proceed more slowly than initially while preventing further CO2 increases, since the natural CO2 sink strength decreases on time scales of one to several centuries. The model used here does not account for the possible effect on atmospheric CO2 concentration of possible changes in oceanic circulation. Based on past rates of atmospheric CO2 variation determined from polar ice cores, it appears that the largest plausible perturbation in ocean-air CO2 flux due to changes of oceanic circulation is substantially smaller than the permitted fossil fuel CO2 emissions under the above strategy, so tieing fossil fuel emissions to the total sink strength could provide adequate flexibility for responding to unexpected changes in oceanic CO2 uptake caused by climatic warming-induced changes of oceanic circulation.  相似文献   

2.
3.
Summary The periods of long waves in the circumpolar atmosphere are considerably longer than at lower latitudes because the variation of the Coriolis parameter with latitude decreases from the equator to the poles. The period length increases with decreasing meridional extent of the oscillation and with increasing meridional wave number. Numerical examples of period lengths for different longitudinal and meridional wave numbers and for different meridional extents of the oscillations are shown in Figs. 1–3. The vertical variation of the oscillations is considered only for the simple case of an isothermal atmosphere in order to illustrate the role of the vertical structure of the atmosphere in determining the free oscillations and in regulating the atmospheric response to a forcing function. As a specific example a periodic heating function has been assumed whose intensity decreases upward exponentially. With plausible values for the amplitude of this heating function reasonable values are obtained for the wind and pressure disturbance due to the heating.
Lange Wellen in der polaren Atmosphäre
Zusammenfassung Die Perioden langer Wellen in der polaren Atmosphäre sind wesentlich länger als in den niederen Breiten, da die Änderung des Coriolisparameters mit der Breite vom Äquator zu den Polen abnimmt. Die Periodenlänge nimmt zu mit abnehmender meridionaler Ausdehnung der Schwingung und mit zunehmender meridionaler Wellenzahl. Numerische Werte von Periodenlängen sind aus Abb. 1–3 zu ersehen. Die Vertikalstruktur der Schwingungen ist für den einfachen Fall einer isothermen Atmosphäre behandelt, um zu zeigen, wie die vertikale Schichtung der Atmosphäre die freien Schwingungen bestimmt und die Ansprechung auf erzwungene Schwingungen reguliert. Als konkretes Beispiel wird eine periodische Erwärmung und Abkühlung angenommen, die mit der Höhe exponentiell abnimmt. Mit realistischen Werten für diese periodische Erwärmung ergeben sich plausible Wind- und Druckwerte.

With 5 Figures  相似文献   

4.
大气系统中的熵   总被引:4,自引:2,他引:4  
仪垂祥 《大气科学》1989,13(3):367-372
本文以质量和能量守恒定律及局域平衡假设为依据,定义了相变亲合势,导出了大气系统的熵演化方程。  相似文献   

5.
The convective atmospheric vortex models of Kuo (1966) and Kendall (1978) are extended to allow the formulation of similarity equations for the unsteady vortex arising from an ambient flow with unstable stratification and rotation. In particular, a new analytical solution is found which allows flow at large radius that is more physically realistic than in any earlier solutions. Additional unsteady solutions are obtained numerically but at large radius these are subject to the limitations of earlier solutions.  相似文献   

6.
早期的理论分析认为大气中临界纬度的存在使得热带-热带外的大气活动互不影响。然而,大量的观测事实表明中低纬度大气运动存在着明显的动力联系。为了帮助人们更好地理解大气中的遥相关现象,在大量文献的基础上,综述了几种波能量传播理论:(1) 大圆理论指出了罗斯贝波在球形大气中的传播特征;(2) 西风通道理论发现了中纬度瞬变扰动越赤道传播的“走廊”;(3) 能量堆积-波列发射理论揭示了热带扰动影响到更高纬度大气活动的可能过程;(4) 赤道波侧向膨胀理论则利用转折纬度的概念更进一步解释了这种中低纬度大气相互作用的物理机制;(5) 经向基本流理论则认为在一定的条件下定常波可以穿过热带东风带传播到另一半球。此外,文中还回顾了在波-流相互作用诊断方面的研究进展,尤其是关于罗斯贝波、惯性重力波和赤道开尔文波。大气能量的经向传播具有显著的年变化和年际变化,这与ENSO、西风急流、大洋中部槽等的变化密切相关。  相似文献   

7.
An analysis of time variations of the earth‘s length of day (LOD) versus atmospheric geopotential height fields and lunar phase is presented. A strong correlation is found between LOD and geopotential height from which a close relationship is inferred and found between atmospheric circulation and the lunar cycle around the earth. It is found that there is a 27.3-day and 13.6-day east-west oscillation in the atmospheric circulation following the lunar phase change. The lunar revolution around the earth strongly influences the atmospheric circulation. During each lunar cycle around the earth there is, on average, an alternating change of 6.8-day-decrease, 6.8-day-increase, 6.8-day-deerease and 6.8-day-increase in atmospheric zonal wind, atmospheric angular momentum and LOD. The dominant factor producing such an oscillation in atmospheric circulation is the periodic change of lunar declination during the lunar revolution around the earth. The 27.3- day and 13.6-day atmospheric oscillatory phenomenon is akin to a strong atmospheric tide, which is different from the weak atmospheric tides, diurnal and semidiurnal, previously documented in the literature. Also it is different from the tides in the ocean in accordance with their frequency and date of occurrence. Estimation shows that the 27.3-day lunar forcing produces a 1-2 m s^-1 change in atmospheric zonal wind. Therefore, it should be considered in models of atmospheric circulation and short and middle term weather forecasting. The physical mechanism and dynamic processes in lunar forcing on atmospheric circulation are discussed.  相似文献   

8.

We study the spatio-temporal variability of Atmospheric Rivers (ARs) and associated integrated water vapor and atmospheric parameters over the Euro-Atlantic region using long-term reanalysis datasets. Winds, temperature, and specific humidity at different pressure levels during 1979–2018 are used to study the water vapor transport integrated between 1000 and 300 hPa (IVT300) in mapping ARs. The intensity of ARs in the North Atlantic has been increasing in recent times (2009–2018) with large decadal variability and poleward shift (~ 5° towards the North) in landfall during 1999–2018. Though different reanalysis datasets show similar spatial patterns of IVT300 in mapping ARs, bias in specific humidity and wind components led to IVT300 mean bias of 50 kg m−1 s−1 in different reanalysis products compared to ERA5. The magnitude of winds and specific humidity in the lower atmosphere (below 750 hPa) dominates the total column water vapor and intensity of ARs in the North Atlantic. Reanalysis datasets in the central North Atlantic show an IVT300 standard deviation of 200 kg m−1 s−1 which is around 33% of the ARs climatology (~ 600 kg m−1 s−1). Though ARs have a higher frequency of landfalling over Western Europe in winter half-year, the intensity of IVT300 in winter ARs is 3% lower than the annual mean. The lower frequency of ARs in the summer half-year shows 3% higher IVT300 than the annual mean. While ARs in the North Atlantic show a strong decadal change in frequency and path, the impact of the North Atlantic Oscillation (NAO) and Scandinavian blocking on the location of landfall of ARs are significant. Furthermore, there is a strong latitudinal dependence of the source of moisture flux in the open ocean, contributing to the formation and strengthening ARs.

  相似文献   

9.
Scaling the atmospheric boundary layer   总被引:11,自引:1,他引:11  
We review scaling regimes of the idealized Atmospheric Boundary Layer. The main emphasis is given on recent findings for stable conditions. We present diagrams in which the scaling regimes are illustrated as a function of the major boundary-layer parameters. A discussion is given on the different properties of the scaling regimes in unstable and stable conditions.  相似文献   

10.
Scientific publications as well as personal contacts at scientific meetings always give an impetus tothe advancement of science. Since the mid-seventies China has participatod in more and moreinternational conferences on atmospheric sciences. Especially in recent years china has actively takenpart in such interchanges. Beautiful as they are, the intricate Chinese characters, have given muchtrouble to our foreign colleagues in keeping abreast of the current developments in our atmospheric  相似文献   

11.
Helicity Dynamics of Atmospheric Flow   总被引:17,自引:0,他引:17  
Helicity is an important physical variable which is similar to the energy and enstrophy in three-dimensional fluid. It can be used to describe the motion in the direction of fluid rotation and also can be regarded as a new physi-cal variable in turbulence theory. In recent years, it has been used in atmospheric dynamics. In this paper, helicity of atmospheric flow, especially helicity in the boundary layer and in the vicinity of front was discussed. These results show that helicity is usually positive in the boundary layer due to the effect of friction. The helicity of boundary layer flow is larger in anticyclone than that in cyclone, resulting from the different wind structures of boundary layers in an-ticyclone and cyclone under the geostrophic momentum approximation. It is possible that the helicity is negative at certain height in the baroclinic boundary layer. The influences of nonlinearity and baroclinity on the helicity are im-portant. The so called “Cloud Street” in the boundary layer is related to the dynamics of helicity. Helicity in the at-mosphere can be expressed as the temperature advection under some conditions, so helicity would be allowed to des-cribe the frontogenesis and development of frontal structure. The amplitude of helicity increases with time in the frontogenesis. A large gradient of helicity is generated in the region located to the northeast of the surface low and in which the front is formed. In warm frontal region, as well as behind the trough of temperature, the helicity is positive, while the helicity is negative in cold frontal sector and in the ahead ridge of temperature. The largest helicity occurs in the boundary.  相似文献   

12.
13.
14.
基于经验公式分析了天津市2013-2017年大气自净能力,以及PM2.5和PM10质量浓度的时空分布特征,并探讨了大气自净能力与大气颗粒物PM2.5质量浓度的关系,以期更好的理解大气环境对污染物浓度变化的影响。结果表明:时间变化上,天津市大气自净能力在午后13-14时最大,夜间最低,一年之中在采暖季(10月至翌年3月)要小于非采暖季,与之相反,天津市PM2.5和PM10质量浓度在采暖季均高于非采暖季。2017年相对于2013年,大气自净能力增加了5%,而PM2.5质量浓度下降了34%,PM10质量浓度则减少了47%。空间分布上,大气自净能力各季节均表现为沿海高于内陆,城区低于郊区的分布,天津市的PM2.5和PM10质量浓度的高值也主要集中在中南部地区,尤其是城区。大气自净能力与颗粒物浓度的分布在空间分布上有着一定的对应关系。分析表明,天津市大气自净能力日均值与PM2.5质量浓度日均值呈负相关,两者的相关系数为-0.34,在采暖季,相关系数有所提高。通过大气自净能力与PM2.5质量浓度变化的分析可知,重污染事件大多数发生在低大气自净能力时。  相似文献   

15.
Hydroxyl radical (OH) concentrations in the atmospheric boundary layer over a number of remote ocean locations are calculated from the measured diurnal variation in atmospheric dimethylsulfide (DMS). By using averaged DMS data sets from extended periods, the calculation yields OH concentrations averaged over periods from several days to weeks. These average OH concentrations range from 7×105 to 2.9×106 molecules cm-3, corresponding to midday maxima of 3 to 12×106 molecules cm-3. The lowest values correspond to studies with the lowest light intensity (Antarctic summer and South Atlantic winter), and the highest values to regions with probable anthropogenic influence. In addition to the long term averages, daily average OH levels can be calculated for most days in a two week period from a cruise in the tropical eastern Pacific. These calculations are in good argeement with global average OH levels derived from other tracers, and are consistent with model OH calculations when allowance is made for variation in ambient ozone levels between the studies. Estimates of gas exchange made from the diurnal variation of DMS suggest that either the gas exchange coefficient of DMS or the boundary layer mixing depth may have been overestimated in past analyses.  相似文献   

16.
The energy cycle characterizes basic aspects of the physical behaviour of the climate system. Terms in the energy cycle involve first and second order climate statistics (means, variances, covariances) and the intercomparison of energetic quantities offers physically motivated “second order” insight into model and system behaviour. The energy cycle components of 12 models participating in AMIP2 are calculated, intercompared and assessed against results based on NCEP and ERA reanalyses. In general, models simulate a modestly too vigorous energy cycle and the contributions to and reasons for this are investigated. The results suggest that excessive generation of zonal available potential energy is an important driver of the overactive energy cycle through “generation push” while excessive dissipation of eddy kinetic energy in models is implicated through “dissipation pull‘’. The study shows that “ensemble model” results are best or among the best in the comparison of energy cycle quantities with reanalysis-based values. Thus ensemble approaches are apparently “best” not only for the simulation of 1st order climate statistics as in Lambert and Boer (Clim Dyn 17:83–106, 2001) but also for the higher order climate quantities entering the energy cycle.  相似文献   

17.
The measurement of atmospheric winds using a cup anemometer to measure speed and a wind vane to measure direction, recording the data on paper charts is commonplace. Standard Meteorological Service criteria stipulate that the wind charts so recorded are read (averaged over one hour) by taking the dominant wind direction over an hour and the wind run then gives the speed over that hour. However, fluctuations of wind direction can lead to erroneous results. A vector average wind obtained using two orthogonally mounted propeller anemometers is described here, and comparisons are drawn between this and the first-mentioned technique. Prevailing winds are shown to be approximately the same for the two systems, but minor components can differ considerably. It is also shown that the integration time of the wind will have a marked effect on results.  相似文献   

18.
A newly developed kite based atmospheric sounding system is described that can be deployed under a wide range of weather conditions. The Delta Kite system can be flown in wind speeds ranging from 4 to 25 ms-1, while the exceptional lift capabilities of the kite allow several kilograms of payload to be attached to the kite and/or tether. In conjunction with its battery powered winch, the Delta Kite atmospheric sounding system is ideally suited to meteorological studies in remote locations where vehicle access may not be possible.  相似文献   

19.
王明星 《大气科学》1988,12(2):216-224
本文综述了O3研究的主要方面,包括平流层O3的光化学平衡,人为活动对平流层O3破坏的可能性及相应的理论和存在的问题,对流层O3的源和汇及人类活动使对流层O3增加的可能性及相应的理论问题。最后还讨论了O3的观测方法和存在的问题。  相似文献   

20.
The rate of diffusion of a cloud depends on cloud dimensions. As the cloud enlarges, larger eddies come into play and the rate of diffusion increases. The turbulent diffusion process is scale-dependent. The gradient-transfer theory (K-theory) is only appropriate when the dimensions of the dispersed material are much larger than the size of the turbulent eddies. Introduction of a spectral turbulent diffusivity function (STD) makes it possible to treat the diffusive transport in a Eulerian system, with diffusivity effectively dependent on the actual size of the concentration distribution. The basic innovation is that diffusion is treated in the Fourier space and the diffusion coefficient is dependent on the wave number of the Fourier components of the concentration distribution. It is shown that the concept of the wave-number-dependent diffusivity leads to a non-local flux-gradient relation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号