首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
西南地区2次秋冬春季持续严重干旱气候成因对比   总被引:2,自引:0,他引:2  
利用多种资料从不同方面对2009/2010、2012/2013年西南地区秋冬春季持续严重干旱进行对比分析,结果表明:这2次季节连旱都受热带西太平洋、孟加拉湾、中南半岛和青藏高原东部等地区环流异常、水汽输送通量散度异常、热带印度洋海表温度异常以及北极涛动(AO)异常的影响。2009年和2012年秋冬季,西南地区均受较强的下沉运动控制,环流形势异常和热带印度洋海表异常增温,导致来自孟加拉湾的水汽输送偏弱,同时该地区水汽输送通量辐散偏强,动力因子和水汽条件都不利于降水;AO持续负位相是引起持续干旱的重要原因,它不仅使南支槽减弱变浅,西南水汽输送减少,还致使贝加尔湖脊系统偏弱,北方南下冷空气主体偏东,不利于冷暖空气在西南地区上空交汇。热带西太平洋海表温度异常并非2次干旱事件的直接原因,且对这2次干旱的影响有所不同,其中2009/2010年的干旱发生在El Nino Modoki事件背景下,2012/2013年则受到弱的La Nina事件的影响。  相似文献   

2.
应用1961 2010年NCEP/NCAR全球逐月再分析资料,对云南4次极端干旱年(下称干旱年)5月大气环流与4次5月降水偏多年(多雨年)大气环流进行合成对比分析,结果表明,两者从高纬到低纬都存在显著差异。干旱年500 hPa欧亚中高纬为两槽一脊,对应距平场呈"-+-"分布,西风带季节性北移晩;海平面气压场上亚洲为大范围负距平,影响云南的冷空气偏弱。而多雨年则相反,欧亚中高纬为两脊一槽,对应距平场呈"+-+"分布,西风带季节性北移早,乌拉尔山至里海的低槽引导冷空气入侵中国,海平面气压场上高原东部为正距平中心,影响云南的冷空气偏强。干旱年低纬地区环流差异表现为低层西太平洋副热带高压(下称西太副高)偏强、偏西,赤道西风向东、向北推进受阻,孟加拉湾、中南半岛的夏季风偏弱,爆发偏晚;而多雨年的环流形势则相反,西太副高偏弱、偏东,索马里越赤道气流和赤道西风偏强,孟加拉湾、中南半岛的夏季风偏强,爆发偏早;高层南亚高压反气旋环流多雨年比干旱年西伸更明显,范围更大、更强。与多雨年云南上空为异常上升运动不同,干旱年北半球低纬为大范围深厚的异常下沉运动,云南仍为Hadley经圈环流的下沉支控制。对水汽分析表明,多雨年西太副高偏东,云南以西南季风水汽输送为主,水汽通量辐合较常年偏强,水汽含量比多年平均增加,干湿季转换早;而干旱年西太副高偏西、偏南,云南以西风带水汽输送为主,对应异常的水汽通量辐散,水汽含量较常年减少,干湿季转换迟。亚洲夏季风强度指数WYI与5月降水有显著的正相关,并与5月极端降水有较好的对应关系。  相似文献   

3.
云南极端干旱和多雨年5月异常环流的合成特征   总被引:1,自引:0,他引:1  
应用1961 2010年NCEP/NCAR全球逐月再分析资料,对云南4次极端干旱年(下称干旱年)5月大气环流与4次5月降水偏多年(多雨年)大气环流进行合成对比分析,结果表明,两者从高纬到低纬都存在显著差异。干旱年500 hPa欧亚中高纬为两槽一脊,对应距平场呈"-+-"分布,西风带季节性北移晩;海平面气压场上亚洲为大范围负距平,影响云南的冷空气偏弱。而多雨年则相反,欧亚中高纬为两脊一槽,对应距平场呈"+-+"分布,西风带季节性北移早,乌拉尔山至里海的低槽引导冷空气入侵中国,海平面气压场上高原东部为正距平中心,影响云南的冷空气偏强。干旱年低纬地区环流差异表现为低层西太平洋副热带高压(下称西太副高)偏强、偏西,赤道西风向东、向北推进受阻,孟加拉湾、中南半岛的夏季风偏弱,爆发偏晚;而多雨年的环流形势则相反,西太副高偏弱、偏东,索马里越赤道气流和赤道西风偏强,孟加拉湾、中南半岛的夏季风偏强,爆发偏早;高层南亚高压反气旋环流多雨年比干旱年西伸更明显,范围更大、更强。与多雨年云南上空为异常上升运动不同,干旱年北半球低纬为大范围深厚的异常下沉运动,云南仍为Hadley经圈环流的下沉支控制。对水汽分析表明,多雨年西太副高偏东,云南以西南季风水汽输送为主,水汽通量辐合较常年偏强,水汽含量比多年平均增加,干湿季转换早;而干旱年西太副高偏西、偏南,云南以西风带水汽输送为主,对应异常的水汽通量辐散,水汽含量较常年减少,干湿季转换迟。亚洲夏季风强度指数WYI与5月降水有显著的正相关,并与5月极端降水有较好的对应关系。  相似文献   

4.
对2011年后汛期桂西北的天气气候特点及大气环流特征进行分析,得出桂西北气温偏高,高温日数多,降水偏少,各地出现严重干旱.环流分析表明:西太平洋副热带高压位置持续偏东偏北不利于水汽向桂西北的输送;大陆高压长期控制,下沉气流为主,不利于云雨形成;欧亚中高纬以纬向环流为主,不利于冷空气南下.同时热带气旋的活动偏少,对桂西北的影响弱;且季风槽的强度偏弱也是造成此次严重干旱的主要因素.  相似文献   

5.
采用NCEP/NCAR再分析资料,分析了2008-2009年冬季河南干旱主要发生时段的大气环流状况及干旱缓解的大气环流背景,结果表明:干旱发展主要阶段,北极涛动处于正位相,欧亚中高纬度环流长时间维持阻塞形势,东亚冬季季风偏弱,印缅槽区被反气旋控制,西太平洋副高位置偏东,欧亚地区环流异常长时间维持导致河南发生干旱.2009年2月大气环流发生转变,北极涛动转为负位相,有利于高纬度冷空气南下,低纬度西太平洋副热带高压西进北抬向内地输送水汽,在冷空气与水汽条件配合下,河南2月份经历多次降水过程,旱情得以缓解.  相似文献   

6.
2011年夏季气候异常及主要异常事件成因分析   总被引:4,自引:0,他引:4  
本文对2011年夏季的中国气候及大气环流异常特征进行分析,发现我国总体气温偏高,降水偏少。西北西部、华北南部、江淮至江南一带,西南地区东部等地出现了阶段性的较大范围极端高温天气过程。西南地区东部和广西等地出现严重干旱;而长江下游地区降水显著偏多。进一步对中国气候异常事件的成因分析表明:异常高压的长期维持,孟加拉湾的向北水汽输送偏弱及西太平洋副热带高压位置偏东使其西侧的东南和偏南水汽输送对我国西南地区影响小是导致西南地区严重干旱的大气环流因素;2010年秋季出现的中部型拉尼娜事件可能是西南干旱的一个重要外强迫条件。2011年夏季亚洲极涡偏弱偏小,欧亚中高纬地区经向环流偏强,有利于冷空气南下;同时,中纬度西太平洋地区海温持续偏低而激发反气旋性环流产生,造成西太平洋副高偏大偏强,冷暖气流在长江下游地区交汇造成降水显著偏多。  相似文献   

7.
利用1960~2011年广西西北部16个气象观测站逐月降水资料、NCEP/NCAR再分析月平均资料、NOAA向外长波辐射资料和国家气候中心提供的环流特征量资料,分析了广西西北部地区以往盛夏干旱年的中高纬环流、西太平洋副热带高压和水汽输送特征,重点探讨了2011年盛夏(7~8月)广西西北部特大干旱大气环流的异常特征。结果表明,2011年是1960年以来广西西北部盛夏降水最少的年份。广西西北部2011年盛夏大气环流与以往盛夏干旱年明显不同的是,西太平洋副热带高压较常年异常偏弱偏东,脊线位置明显偏北,中高纬环流平直,乌拉尔山地区和东北亚区域没有明显阻塞高压形势,冷空气活动比常年弱;印缅槽活动较常年偏弱,由南向北的水汽输送明显偏弱,广西西北部上空存在有弱的水汽通量辐散,垂直运动和对流活动均较常年偏弱,这些环流特征均不利于产生降水,造成2011年盛夏广西西北部地区出现特大干旱。  相似文献   

8.
2006年川渝地区夏季干旱的成因分析   总被引:2,自引:1,他引:1  
利用NCEP/NCAR再分析月平均资料、全国160站降水资料、向外长波辐射OLR(outgoinglongwave radiation)资料和所计算的热源资料,分析了2006年夏季东亚大气环流的异常特征,并研究了热力异常与川渝地区夏季降水的关系。结果表明,2006年夏季由南向北的水汽输送较常年偏弱;西太洋副热带高压较常年异常偏强,脊线位置明显偏北,川渝地区受高压系统影响盛行下沉气流,中高纬环流场则表现为乌拉尔山地区和东北亚区域无明显阻塞高压形势,冷空气活动比常年弱;南亚高压比常年偏北偏强,持续控制川渝地区;2006年夏季青藏高原热源偏弱,热带西太平洋暖池区热源偏强,是引起西太平洋副热带高压偏北偏强的重要原因之一。川渝地区夏季降水与西太平洋副热带高压的异常变化有密切关系,川渝地区夏季干旱年,西太平洋副热带高压偏北,并且引起西太平洋副热带高压偏北的原因与2006年类似。  相似文献   

9.
1997年北半球大气环流特征及其影响   总被引:1,自引:0,他引:1  
陈桂英 《气象》1998,24(4):16-21
1997年北半球主要环流特征为:500hPa西太平洋副热带高压盛夏由弱转强、西伸明显、脊线位置偏北;亚洲中纬度经、纬向环流交替出现,纬向环流盛行,春、秋季经向环流加强,冬、夏季冷空气异常偏弱;盛夏南海季风增强,印度季风偏弱;赤道辐合带偏弱。北半球100hPa中低纬度位势高度持续偏高,南亚高压东扩明显;热带海洋出现异常,一次新的厄尔尼诺事件发生,强度大、发展快。在ENSO和大气环流的共同影响下我国天  相似文献   

10.
2010年1-3月大气环流与桂西北干旱   总被引:1,自引:1,他引:0  
利用Micaps提供的常规资料、卫星水汽图像和地面气象记录资料,对2010年1-3月桂西北出现的干旱天气成因进行分析。结果表明:干旱天气出现和维持与特定的大气环流异常相联系。副热带高压偏强位置偏西,阻挡了水汽由南向北输送的路径,不利于降水云雨形成;长波槽宽而浅,冷空气沿着宽槽纬向传播,使得冷空气南下强度减弱,路径偏东;南支槽强度偏弱,西南水汽的输送能力差。  相似文献   

11.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

12.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

15.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

16.
17.
<正>With the support of specialized funds for national science institutions,the Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration set up in October 2008 an experiment base for marine meteorology and a number of observation systems for the coastal boundary layer,air-sea flux,marine environmental elements,and basic meteorological elements at Bohe town,Maoming city,Guangdong province,in the northern part of the South China Sea.  相似文献   

18.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号