首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
亚非感热异常时空特征及其与我国降水异常的关系   总被引:3,自引:2,他引:3  
运用多年全球感热通量数据进行经验正交函数(EOF)分析,得到感热异常关键区。运用小波分析等方法发现,全球地表感热异常存在振荡现象,东半球在年际、年代际尺度上,地表感热异常主要以青藏高原东、西部的反相以及高原西部和北非的反相为热力异常振荡的主要分布形态。再运用中国月平均降水资料进行EOF分析,得到各个感热异常关键区与中国华北、江淮和华南地区汛期降水异常的相关关系,其中北非、青藏高原西北部和马来半岛这3个区域的感热距平之间有较大的相关关系,且感热异常季节变化较小,对我国东部地区降水的影响比较稳定,持续性较好。  相似文献   

2.
王天竺  赵勇 《气象科学》2020,40(6):819-828
基于1979-2017年5月青藏高原地区149个站点观测资料计算的地表感热通量(OBCH)和4套再分析资料提供的地表感热通量,对比分析了青藏高原地表感热通量的时空变化特征。结果表明:5月各地表感热再分析资料在高原主体部分(3 000 m以上部分)的气候平均值均为正值,说明高原主体5月为同一热源,且均呈高原西部(90°E为界)感热通量偏大,东部偏小的特征。5月高原主体各套平均地表感热通量均呈减弱趋势,除ERA感热表现为增强外,其余3套再分析资料在高原西部均表现为减弱,减弱趋势显著;5套资料在高原东部均表现为减弱趋势,除OBCH资料外,均表现为显著减弱。EOF分析发现,除了ERA-Interim资料,其余4套资料在高原主体第一模态主要表现为一致性变化,第二模态空间分布呈明显差异。从各套资料与OBCH资料的时间相关来看,ERA-Interim资料与OBCH资料相关系数可达0.70,说明二者在5月具有较好的年际变化一致性特征,而NCEP2资料与OBCH资料相关系数仅为0.33,说明二者具有较大的年际变化差异。  相似文献   

3.
基于多种资料的青藏高原地表感热的对比分析   总被引:1,自引:0,他引:1       下载免费PDF全文
青藏高原地表感热通量是高原热源的主要分量之一,对高原局地天气系统、我国天气气候以及亚洲季风等都有着重要影响。选取1980~2016年青藏高原的站点资料和ERA-Interim、NCEP1、NCEP2再分析资料,计算高原地表感热通量的分布状况和时间变化特征并对不同资料得到的结果进行比较分析,结果表明:4种资料在夏季的空间分布、年际变化,高原中部的年际变化,以及长期变化趋势上具有较好的一致性,其中ERA-Interim感热资料较优于其他两种再分析资料。青藏高原的地表感热通量分布呈西高东低的特征,年均最大值出现在柴达木盆地,最小值位于贡山;区域平均值春季最大,冬季最小。感热逐月变化呈单峰型分布,不同分区的年际变化均在2001年或2003年由减弱趋势转变为增强趋势。   相似文献   

4.
伊朗高原和青藏高原热力作用对东亚区域气候具有重要影响。基于1979—2014年欧洲中心ERA-interim月平均再分析地表热通量资料,分析了春、夏季青藏高原与伊朗高原地表热通量的时、空分布特征以及春、夏季青藏高原与伊朗高原地表热通量的关系。结果表明,春、夏季青藏高原与伊朗高原地表热通量在季节、年际和年代际尺度上具有不同的时、空分布特征。对于青藏高原,春、夏季地表感热呈西部大东部小、地表潜热呈东部大西部小;地表感热在春季最大且大于地表潜热,地表潜热在夏季最大且大于地表感热。在年际时间尺度上,春、夏季青藏高原地表热通量异常的年际变化在东、西部不一致,青藏高原西部,地表感热与地表潜热有较强的负相关关系。青藏高原地表感热异常具有很强的持续性,当春季地表感热较强(弱)时,夏季高原地表感热同样较强(弱)。青藏高原东部与西部地表热通量的年代际变化有明显差异,春(夏)季青藏高原东部地表感热呈显著的年代际减弱趋势,1998(2001)年发生年代际转折,由正异常转为负异常;而青藏高原西部地表感热在春季则有显著的增大趋势,2003年发生年代际转折,由负异常转为正异常。青藏高原东部地表潜热仅在春季为显著减弱趋势,2003年出现年代际转折,由正异常转为负异常;青藏高原西部地表潜热在春、夏季都有显著减弱趋势,年代际转折出现在21世纪初,由正异常转为负异常。对于伊朗高原,春、夏季地表热通量的空间分布在整个区域较一致,地表感热在夏季最大,地表潜热在春季大、夏季小,但各季节地表感热都大于地表潜热。相对于青藏高原地表感热,伊朗高原地表感热在各月都更大。在年际时间尺度上,春、夏季伊朗高原各区域地表热通量异常的年际变化较一致;地表感热与潜热有很强的负相关关系;伊朗高原地表感热、潜热异常都具有持续性,当春季地表感热(潜热)通量较强(弱)时,夏季地表感热(潜热)通量同样较强(弱)。伊朗高原北部与南部地表热通量的年代际变化存在差异。其中,春、夏季伊朗高原北部地表感热(潜热)呈显著增强(减弱)趋势,在20世纪末发生了年代际转折,春、夏季北部地表感热(潜热)由负(正)异常转为正(负)异常。而伊朗高原南部春、夏季地表热通量无显著变化趋势,但春季地表感热、潜热与夏季地表感热同样在20世纪末存在年代际转折,地表感热(潜热)由负(正)异常转为正(负)异常。春、夏季两个高原地区地表热通量的关系主要表现为:就春季同期变化而言,伊朗高原地表感热与青藏高原西部地表感热具有同相变化关系,与青藏高原东部地表感热具有反相变化关系,伊朗高原地表潜热与青藏高原东部地表潜热具有同相变化关系;就非同期变化而言,春季伊朗高原地表感热与夏季青藏高原东部地表感热存在反相变化关系。   相似文献   

5.
于琳琳  陈海山 《高原气象》2012,31(5):1173-1182
利用1981—2002年GIMMS-NDVI资料、中国西部数据中心提供的雪深长时间序列数据集、中国753个测站降水资料及ECMWF再分析地表通量资料,通过相关和合成分析等统计方法,探讨了青藏高原(下称高原)4月植被覆盖、积雪异常与地表加热异常和与后期中国夏季降水之间的联系。结果表明,高原4月的陆面状况与同期的地表加热存在密切的联系,植被覆盖和积雪深度的变化具有较好的一致性;高原植被覆盖(积雪)主要影响地表感热(潜热)通量,从而改变高原地区的地表加热;高原地表加热和中国夏季降水存在较为密切的关系。就年际异常而言,前期高原地表加热异常与长江以南地区6月降水存在明显的负相关,与7月降水的显著负相关区域主要位于华北、东北地区,与8月降水的显著负相关区主要位于长江中上游及淮河一带。相比之下,前期高原地表加热与夏季降水的年际增幅异常之间存在更为密切的联系,即前期高原地表加热年际增幅异常与长江以南及西南部分地区6月降水年际增幅异常为负相关,而与7、8月降水年际增幅异常主要呈南正北负的分布特征。  相似文献   

6.
青藏高原地面感热及其异常的诊断分析   总被引:24,自引:2,他引:22  
利用青藏高原主体60个地面气象观测站1961~2000年历年各月本站气压、地面气温、风速、地表温度等资料,计算了高原地面拖曳系数CD和地面感热通量.通过主成分分析、主值函数和功率谱分析等方法,对各季代表月CD系数和地面感热通量的基本气候特征,以及地面感热通量异常变化的空间结构和时间演变趋势作了较系统的诊断研究.结果表明:利用40年资料计算的拖曳系数与地面感热通量可以较好的反应青藏高原下垫面感热的基本气候特征,即高原CD系数东南部大,西北部小;冬季大,夏季小.多年平均高原地面感热通量仅在冬季小范围出现弱的负值,其余季节感热均为正值.感热通量大的地方其年际变化也大,其年际异常的主要空间型,第一是南北差异,第二东西差异,第三为高原主体及东部地区与外围的差异.其在年际变化中存在明显的10年际以上变化趋势,具体表现在1961~2000年期间,冬季高原北部和西部地区地面感热有减弱趋势,而高原中部和东南部呈明显的上升趋势.夏季高原主体及东部地区感热通量不断加强,而高原西部地区则相反.春、夏、秋三季均以13年以上的长周期振荡为主,冬季第一主分量表现为准3年的短周期变化.    相似文献   

7.
利用1961-2014年中国气象观测站逐日常规资料,分析了在不同季节和不同海拔上,青藏高原地表感热的气候态特征以及热量拖曳系数和密度对地表感热计算的影响,并研究了高原地表感热在年际、年代际以及趋势变化上的时空分布特征;最后定量研究了表面风速与地气温差在年际和年代际时间尺度上对地表感热变化的相对贡献。结果表明,使用实际密度和常热量拖曳系数的总体动力学公式计算的地表感热最为合理;总体来说高原地表感热随着高度上升而增加,春季最大,秋季与冬季最小;空间分布上,春季高原东南部大北部小,夏季南部小北部大。春季年际、年代际地表感热经验正交函数分解第一模态空间型分别具有高原南北反向分布和高原主体与其东北反向分布的特征,夏季与之相似。高原整体而言,20世纪60-70年代末(春季)或70年代初(夏季),地表感热增加,其后至21世纪00年代初地表感热下降,之后又上升。在显著下降的1979-2003年间,春夏两季地表感热变化趋势分布均呈一致性的减弱,其中南部减弱最为显著。平均而言,在年际时间尺度上,表面风速对地表感热的贡献与地气温差对地表感热的贡献大小相当;而在年代际时间尺度上,表面风速对地表感热的贡献大于地气温差对地表感热的贡献。  相似文献   

8.
利用青藏高原地区代表站点的实测地表热通量数据、JRA-55和NCEP再分析资料以及中国西北地区东部代表站点的降水资料等数据,通过波文比分析、奇异值分析(下称SVD)以及环流场的合成分析等方法,研究了青藏高原地区春季地表加热场异常与同期中国西北地区东部降水变率的关系,结果表明:(1)高原春季波文比值的变化反映出高原地表的非绝热加热中,春季感热加热的贡献较为显著,是高原春季地表加热的主要成分;(2)SVD分析表明,春季高原地表感热的异常与同期中国西北地区东部的降水存在负相关关系,春季高原地表感热增强的年份,中国西北地区东部的春季降水减少;(3)春季地表感热强-弱年的高原周边垂直环流偏差场表明,春季高原地表感热的年际异常增强(减弱)会引起高原周边地区的垂直环流场上升气流的减弱(增强);(4)相对涡度场、位势高度场、风场和水汽通量散度场的合成分析表明,春季高原地表感热偏强的年份,中国西北地区东部对流层高层以正涡度和气流的辐合运动异常为主,中低层以负涡度和辐散下沉运动异常为主,因此中国西北地区东部春季的水汽辐合由低层向高层逐渐减弱,不利于春季降水的发生。  相似文献   

9.
利用测站常规观测资料及经验公式计算得到我国南方地区地表感热通量资料,并分析了地表感热通量的时空变化特征。一年四季中,南方西部地区的感热通量基本都是呈线性增加趋势,而中、东部地区的感热通量则是线性减小的;南方地区感热通量的时间变化以年际变化为主。地气温差是决定地表感热通量逐年变化的最主要因子,近地面风速次之。地表感热通量年际分量的经验正交函数分解结果表明,四季感热通量异常的第一种主要变异模态皆为全区同号的分布型,而第二主要变异模则是呈东西反号的分布型。   相似文献   

10.
青藏高原热源异常对1999年东亚夏季风异常活动的影响   总被引:13,自引:4,他引:9  
孙颖  丁一汇 《大气科学》2002,26(6):817-828
以1999年青藏高原的热源异常为出发点,讨论了其对东亚夏季风异常活动的影响,并从陆气相互作用的角度分析了该年热源异常的原因.结果表明,1999年青藏高原大气热源建立的时间明显偏晚,春夏季热源强度异常偏弱.这使得向高原的低层流入气流明显偏弱,垂直上升运动减弱,向高原的辐合减少,季风经圈环流变弱,高原南侧、东南侧的西南夏季风减弱,引起了夏季风的爆发偏晚及在中国东部北进的偏弱.而进一步对热源异常成因的分析表明,陆面因子的异常变化所引起的感热加热偏弱是热源偏弱的主要因子.高原积雪的减幅在春夏季变小,地表温度的增加变慢,地表温度偏低,引起了感热加热在春夏季的偏弱,进而导致了热源异常.  相似文献   

11.
The authors examine the Indian Ocean sea surface temperature(SST) biases simulated by a Flexible Regional Ocean Atmosphere Land System(FROALS) model.The regional coupled model exhibits pronounced cold SST biases in a large portion of the Indian Ocean warm pool.Negative biases in the net surface heat fluxes are evident in the model,leading to the cold biases of the SST.Further analysis indicates that the negative biases in the net surface heat fluxes are mainly contributed by the biases of sensible heat and latent heat flux.Near-surface meteorological variables that could contribute to the SST biases are also examined.It is found that the biases of sensible heat and latent heat flux are caused by the colder and dryer near-surface air in the model.  相似文献   

12.
Turbulent surface heat fluxes (latent and sensible heat) are the two most important parameters through which air–sea interaction takes place at the ocean–atmosphere interface. These fluxes over the global ocean are required to drive ocean models and to validate coupled ocean–atmosphere global models. But because of inadequate in situ observations these are the least understood parameters over the tropical Indian Ocean. Surface heat fluxes also contribute to the oceanic heat budget and control the sea surface temperature in conjunction with upper ocean stratification and ocean currents. The most widely used flux products in diagnostic studies and forcing of ocean general circulation models are the ones provided by the National Centres for Environment Prediction (NCEP) reanalysis. In this study we have compared NCEP reanalysed marine meteorological parameters, which are used for turbulent heat fluxes, with the moored buoy observation in the south-eastern Arabian Sea. The NCEP latent heat flux (LHF) and sensible heat flux (SHF) derived from bulk aerodynamic formula are also compared with that of ship and buoy derived LHF and SHF. The analysis is being carried out during the pre-monsoon and monsoon season of 2005. The analysis shows that NCEP latent as well as sensible heat fluxes are largely underestimated during the monsoon season, however, it is reasonably comparable during the pre-monsoon period. This is largely due to the underestimation of NCEP reanalysis air temperature (AT), wind speed (WS) and relative humidity (RH) compared to buoy observations. The mean differences between buoy and NCEP parameters during the monsoon (pre-monsoon) period are ~21% (~14%) for WS, ~6% (~3%) for RH, and ~0.75% (0.9%) for AT, respectively. The sudden drop in AT during rain events could not be captured by the NCEP data and, hence, large underestimations in SHF. During the pre-monsoon period, major contribution to LHF variations comes from WS, however, both surface winds and relative humidity controls the LHF variations during the monsoon. LHF is mainly determined by WS and RH during the monsoon and, WS is the main contributor during the pre-monsoon.  相似文献   

13.
This study documents the variability of surface sensible and latent heat fluxes in five regions of China (Northwest China, the Tibetan Plateau, Northeast China, North China, and Southeast China) using the ERA-40 reanalysis for the years 1960–2000. The surface sensible and latent heat flux variations are remarkably different in Northwest and Southeast China. The seasonal variation of the surface sensible heat fluxes is largest in Northwest China and smallest in Southeast China. In contrast, the seasonal variation in latent heat flux is largest in Southeast China and smallest in Northwest China. The interdecadal variation of surface sensible and surface latent heat fluxes strongly depends on both the region and season. The trends in surface sensible and latent heat fluxes in all four seasons are mainly caused by variations in both the land–air temperature difference and in the specific humidity. There is also a limited contribution of wind speed in some regions, depending on the season.  相似文献   

14.
曾剑  张强  王春玲 《气象学报》2016,74(6):876-888
东亚夏季风边缘摆动区既是气候敏感区,也是生态脆弱区和农牧交错带,其特殊陆面能量空间分布格局和演变特征对理解该区域天气和气候变化有重要意义。然而受限于陆面观测资料缺乏,对这部分陆面特征的认识仍非常有限。通过对34 a陆面模拟集成产品的分析,发现夏季风边缘摆动区内潜热和感热通量在空间上表现出明显的过渡特征,由摆动区外的相对均衡状态进入到摆动区内的“突变转换”;陆面能量平衡具有明显的区域特征,能量平衡各分量在纬向和经向都表现出了“阶梯型”的变化。就演变而言,区域平均感热和潜热没有表现出规律性的递减或递增趋势,波动幅度在±20%以内,但在20世纪末存在一个较为明显的摆动相位转换:1997年之前夏季风边缘摆动区夏季风相对活跃,潜热通量总体高于其气候值而感热通量则低于其气候值,之后出现了相反的现象。此外,区内感热和潜热通量对气候环境干湿性质非常敏感,两者存在明显的线性关系。   相似文献   

15.
热带太平洋和印度洋热源对大气影响的季节变化特征   总被引:2,自引:0,他引:2  
本文利用1970—1979年COADS2°×2°格点月平均资料,计算了30°S—30°N热带太平洋和印度洋洋面上的有效长波辐射、感热和潜热通量以及它们的季节变化和年变化。结果指出:在冬季半球热带海洋外侧有大量的长波辐射、感热和潜热向大气输送,输送通量的季节变化大;热带太平洋地区西北部热通量的季节变化最大,赤道洋面地区热通量的年变化最小,潜热是洋面上热量输送的最大项,季节变化也最大;感热的输送量虽不及有效长波辐射,但其季节变化与有效长波辐射的变化相当;赤道地区是有效长波辐射和潜热通量的低值区,暖池地区是有效长波辐射的低值中心,靠近秘鲁海域的东南赤道太平洋是感热通量的负值区;热带太平洋西北部和阿拉伯海、孟加拉湾地区的热通量及年、季变化与亚洲季风有密切的关系,同时对我国和南亚地区的气候有重要的影响。   相似文献   

16.
利用位于青藏高原东侧理塘大气综合观测站2008年观测资料,分析了高寒草甸下垫面上地表通量的时间变化特征,确定了温度、水汽和CO2的归一化标准差在不稳定情况下随稳定度变化的通量方差关系,应用通量方差法对感热、潜热和CO2通量进行了计算,并与涡旋相关系统的观测结果进行了比较。结果表明:地表通量月平均日变化呈较为规则的日循环特征,季节变化特征也很明显,雨季(5-9月)潜热大于感热,干季则以感热为主,CO2通量以6-9月值最大。在不稳定条件下,温度、水汽和CO2的归一化标准差随稳定度的变化均满足-1/3规律,其通量方差相似性常数分别为1.2,1.4和0.9。通量方差法估算出的通量值与涡旋相关观测得到的通量值有较好的一致性,但感热通量的效果优于潜热通量和CO2通量。该方法高估了感热通量尤其是潜热通量,而低估了CO2通量。采用直接观测的感热通量值计算潜热通量和CO2通量可改善计算结果。  相似文献   

17.
青藏高原西部地表通量的年、日变化特征   总被引:14,自引:6,他引:8  
利用青藏高原西部地区改则和狮泉河两个自动观测气象站1998年全年每天24个时次的风速、温度和湿度等梯度观测资料,采用湍流相似理论.计算了改则和狮泉河的动量通量、感热通量以及潜热通量。结果表明:改则和狮泉河两地的地表湍流通量都具有明显的季节变化和日变化,且其季节变化的相同点表现在感热通量均在5月份最大,1月份最小:而潜热通量均在8月份最大。不同点表现在改则的潜热通量在12月份最小,狮泉河1~5月平均潜热通量为负,以凝结为主,改则的月平均蒸发及全年的蒸发总量比狮泉河的要大。而其感热通量比后者的都小。日变化幅度随季节变化明显,表现在夏季地表通量的日变化幅度大,冬季要小得多。  相似文献   

18.
Seven key areas of air-sea interaction in the global oceans are determined by comprehensive analysis of the global data of monthly mean sea surface temperature (SST), surface wind, temperature, humidity, sea surface sensible heat and latent heat fluxes. The time-lag correlation between SST and each atmospheric element in each key area are focally analyzed to expose the same and the different features of air-sea interaction in different key areas. The results show that the air-sea thermal interaction is strong in each area, SST, temperature and humidity can be fairly replaced with one another, particularly in the central eastern Pacific and the south India Ocean. The dynamic effect on SST is different in different areas and in the central western Pacific such effect is more important. The correlation between sensible heat, latent heat and SST is more significant in the eastern Pacific, the western Pacific and the two major monsoon areas — the northwestern Pacific and the south India Ocean. By analyzing the sustainable correlation probability of SST and every atmospheric element in each key area, we further know that the anomalies of which element, in which area and in which period are well sustained or easily destroyed. This is beneficial not only to prediction, but also to discussion of the physical mechanism of air-sea interaction.  相似文献   

19.
Observations of surface-layer turbulence and turbulent fluxes were made over a desert in northwestern China as a part of HEIFE (HEIhe river Field Experiment). These show that the normalized variations of the vertical wind component and of the air temperature obey Monin-Obukhov similarity well, especially in free convective conditions. However, the variations of specific humidity do not obey Monin-Obukhov similarity.Mean bulk transfer coefficients of sensible heat and momentum flux are obtained as functions of stability over a wide stability range from the observed data of turbulent fluxes and mast profiles. However, the bulk transfer coefficient for water vapor could not be obtained because of the large scatter of the data. In free convective conditions, the sensible heat flux was found to be approximately proportional to the 1.4 power of temperature difference between the surface and 20m. The bulk transfer coefficient of sensible heat is also obtained as a function of the bulk Richardson number for practical convenience.  相似文献   

20.
洋面动量、感热和潜热通量计算的研究   总被引:3,自引:1,他引:3       下载免费PDF全文
整体传输公式是一种常用的计算洋面海气通量的方法。在作气候平均计算时,存在两种平均方法:方法一F_1=AB及方法二F_2=AB。显然,方法一是合理的,而方法二是对方法一的近似。本文利用COADS资料针对不同的平均时间计算分析了方法二对方法一的近似程度,结果表明:利用方法二计算长期气候平均,平滑时间超过5天则对计算结果必须进行订正;对感热和潜热通量,月平均方法二在20%的精度内可代替方法一,而旬平均方法二则可在10%的精度内代替方法一;动量通量月平均和旬平均精度分别为40%和20%。因此方法二在计算月平均动量通量时必须作订正,或直接用方法一进行计算,本文同时计算比较了1972年(E1 Nino年)和1975年(非E1 Nino年)太平洋洋面的各项能量及总能量收支,发现1972年洋面能量收支年变化幅度比1975年小得多,其差别主要决定于感热和潜热的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号