首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文对2016年“7·19”华北特大暴雨进行观测分析和数值模拟,并设置了改变地形高度的敏感性试验,以探究该过程降水系统的发生发展机制以及太行山地形的作用。结果表明:(1)本次强降水过程发生在“东高西低”的有利环流形势下,受太行山地形和平原环流系统影响,低层东风急流造成强的对流性降水和低涡作用的叠置造成“7·19”华北地区持续性暴雨的维持和加强;(2)第一阶段为对流性降水,太行山东麓大气对流不稳定能量释放,大气逐渐转为稳定层结;第二阶段为低涡降水,涡度收支分析表明水平散度项和扭转项对低涡维持和发展起到了主要的正贡献,同时伴随有较强的上升运动和垂直风切变,垂直风切变的增强促使水平涡度向垂直涡度转变;(3)太行山地形在持续性暴雨中对两阶段降水、低涡和水汽的作用存在差异。地形高度敏感性试验中,地形高度增高对低层气流的阻挡和强迫抬升作用增强,使得地形降水增强,低涡路径东移,且强度增大。水平散度项使得对流层低层辐合上升运动增强,造成涡度的垂直输送,这是低涡发展和维持的重要原因之一。太行山地形阻挡截留东部平原水汽,且水汽回流加强,有利于太行山东麓水汽的输送与辐合。  相似文献   

2.
伊犁河谷是新疆地区暴雨多发且暴雨强度最强的地区。本文以该地区的一次特大暴雨过程为例,利用观测资料以及WRF高分辨率数值模拟结果对该次暴雨过程的环流背景及不稳定条件进行了分析。结果表明:(1)此次降水过程发生在对流层高层南亚高压“双体型”,中层中高纬度“两脊一槽”以及两个中亚低涡发展移动的环流形势下。在伊犁河谷特殊的向西开口的喇叭口地形作用下,中心位于哈萨克斯坦的中亚低涡导致伊犁河谷低层为偏西风,中心位于塔里木盆地的中亚低涡使得伊犁河谷中层为偏东风,导致伊犁河谷内中低层水平风的垂直切变增强;伊犁河谷内,地形及哈萨克斯坦中亚低涡环流的共同作用形成了低空辐合线,辐合线附近形成的辐合区正好与高空急流辐散区垂直叠加,引发河谷内的上升运动增强。低层西风将水汽输送进河谷,并在河谷内迎风坡附近堆积,上升运动增强后导致河谷内堆积的水汽得以抬升。(2)WRF模拟结果分析显示,散度分布、垂直风切变、水汽及热力层结分布等对降水产生均有重要贡献。通过对湿位涡垂直及水平分量的分析得出热力层结影响的对流不稳定对前期降水的产生有影响,同时,垂直风切变影响的对称不稳定对降水增强维持有重要作用。位势散度分析进一步指示出整个降水区低层的对流不稳定主要是由于位势散度的垂直切变部分造成,而位势散度的散度部分能加强河谷内小地形背风坡处的对流不稳定,说明整个降水演变过程中,动热力因子的相互作用共同影响了降水强度和落区。  相似文献   

3.
2005年7月一次大暴雨过程的模拟和诊断分析   总被引:3,自引:1,他引:2  
基于2005年7月9—10日河南、安徽等地一次大暴雨的巨大影响,利用中尺度模式(MM5)对此次过程进行了模拟,并使用NCEP/NCAR再分析资料和模式输出产品作了多种物理量诊断分析,结果表明,贝加尔湖附近阻高、下游的东北冷涡及其伴随的高空槽造成了有利的环流形势,低层切变线及急流是此次暴雨过程的最主要影响系统。散度、涡度、垂直速度、螺旋度及位温的分布和演变反映出在此次降水发生过程中,暴雨区出现了很强的辐合上升运动,中低层大气层结不稳定性强,上下层大气物质交换强烈,在暴雨区上空螺旋度呈"下正上负"的垂直结构,螺旋度正的大值区对应强降水中心;水汽通量散度的分布说明暴雨区有充足的水汽供应,而锋生条件为降水的形成和维持提供了一定的能量。  相似文献   

4.
利用常规观测资料、NCEP再分析资料、多普勒天气雷达资料及数值模拟结果,对2012年8月21日南昌市的一次大暴雨过程进行了数值模拟和诊断分析。结果表明,整层偏南暖湿气流为此次暴雨提供了充分的水汽和不稳定能量。地面冷空气的侵入,促使南昌上空中低层不稳定能量释放,是产生此次强对流过程的直接触发机制。影响南昌市的强雷暴回波有较明显的强回波低质心特征,降水效率较高,加之较长的持续时间,导致此次短时暴雨的重要原因。各物理量诊断分析表明,暴雨区强辐合上升运动,中低层大气强不稳定性层结使得上下层大气物质交换强烈,且低层辐合高层辐散造成的抽吸作用集中在一个纬度左右非常窄的地区,导致此次暴雨过程局地性强。暴雨区上空螺旋度分布呈"下正上负"的垂直结构,螺旋度正的大值区对应强降水中心。  相似文献   

5.
西北区东部一次暴雨的数值模拟试验   总被引:19,自引:23,他引:19  
运用双向嵌套的中尺度数值预报模式MM5,对1998年7月上旬西北区东部一次暴雨过程进行了高分辨率数值模拟和敏感性试验。结果表明,该模式能较好地模拟这次暴雨过程,对这次暴雨过程相关的中尺度系统的发生发展也作出了较成功的模拟;大尺度及积云对流尺度的凝结潜热在降水过程中是一个主要因子,潜热释放将加热中高层大气,促使高层大气辐散,低层辐合,垂直运动加强,导致较大的降水;初始时刻不同地区低层大气水汽含量的多寡直接对本次暴雨产生影响,并为这次暴雨提供了水汽源;地面水汽和感热的垂直输送为暴雨的发生发展补充了能量。  相似文献   

6.
基于WRF模式的暴雨天气过程的数值模拟及诊断分析   总被引:2,自引:0,他引:2  
利用新一代中尺度数值预报模式WRF2.2和1°×1°的NCEP气象再分析资料,对2009年9月17日发生在江苏南部地区覆盖沪宁高速公路的一次大暴雨天气过程进行了数值模拟。经AWMS(the automatic weather monitoring system)实测数据验证,此次天气过程的模拟效果较为理想。对模式输出的物理量进行诊断分析后发现:长江中下游地区的β中尺度低涡的发展、移动对暴雨过程中降水的加强和维持起着重要的作用;水汽辐合带在500hPa以下非常显著,在暴雨区形成了深厚的高湿环境,为暴雨的产生、加强和维系提供了重要的水汽条件;暴雨区内前期及降水过程中都存在较为强烈的垂直运动,且涡度场与散度场在垂直结构配置上一致,使得大气层结不稳定能量释放,形成了旺盛的对流天气;对流层中上层大气为中性层结,低层为位势不稳定,所以整层大气有对流发展,有利于暴雨的形成。  相似文献   

7.
“2007.8.17”山东大暴雨的数值模拟和诊断分析   总被引:3,自引:2,他引:1  
周雪松  阎丽凤  孙兴池  张磊 《气象》2012,38(8):960-970
利用常规资料、区域自动站、气象卫星、多普勒天气雷达、闪电定位资料以及中尺度数值模式WRF,对2007年8月16和17日在山东省新泰市发生的大暴雨天气过程进行分析,并针对中尺度地形对暴雨的影响进行了敏感性试验。研究发现,此次大暴雨发生于副热带高压边缘切变线附近,与速度不连续造成的K-H不稳定而引起的中小涡旋有密切关系。鲁中山脉地形对大暴雨中心的强度和落区有较大影响,在对流层低层产生明显的地形性切变线,加强了偏南暖湿气流的辐合,使大暴雨强度更大,位置更加偏南。对强弱两次相似降水过程进行数值模拟对比试验发现,鲁中山脉地形对两次过程的降水分布、中心强度和落区等影响较为一致,但是对不同强度降雨增幅的影响差异较大,地形对强降雨的增幅作用更加明显。进一步研究表明,地形的抬升作用,造成暴雨区低层辐合加强和垂直速度增强,更有利于不稳定能量积累和水汽的辐合,同时山脉地形在一定程度上还对大气中云水和雨水的分布有较大影响。副热带高压边缘有利的环境背景条件和地形的共同作用是山东局地大暴雨产生和维持的主要物理机制。  相似文献   

8.
利用WRF模式,对2008年5月27日夜间贵州南部山区大暴雨天气进行了数值模拟。复杂地形条件下,数值模拟有一定难度。本次数值模拟能够反映此次大暴雨的降水区域、降水特征和降水强度。在此基础上,利用高分辨率的数值结果,对该暴雨过程的中尺度气旋及地形对降水的作用进行了分析,结果表明:中β尺度气旋是造成此次局地暴雨的直接系统;气旋在结构上表现出中低层强烈的辐合和正涡度柱的耦合,出现了伸展到对流层顶的深厚强上升运动;造成大暴雨的辐合线生成在贵州西部地形梯度较大地方,辐合线上发展起来的中尺度气旋在850 hPa和地面上表现为生成在一个开口向南的喇叭口地形上,由于喇叭口地形对气流的辐合和抬升作用,水汽辐合和上升运动在该地达到最强,无疑对降水的落区和强度有重要影响。  相似文献   

9.
茂名市7·19局地大暴雨分析   总被引:2,自引:2,他引:0  
谢韶 《广东气象》2005,(2):23-24
20 0 4年7月1 9日凌晨,茂名市中北部普遍出现大雨到暴雨,局部大暴雨的降水。从分析大气环流背景和一些物理量的变化,以及利用三点法计算距特殊地形远近两个地区的水平散度,再结合雷达回波的分析,阐明了当地某些特殊地形对强降水的贡献作用。  相似文献   

10.
一次暴雨过程的动力诊断   总被引:3,自引:2,他引:1  
应用常规观测资料及NCEP再分析资料,对2008年5月21日福建中部地区暴雨成因进行诊断分析。结果表明:此次强降水位于水汽通量散度平流项与散度项辐合配置较好区域;高层较强涡度平流促进福建中部地区上升运动;差动假相当位温平流增强大气不稳定度,促进垂直上升运动;低层水平运动锋生中心的位置和强度与未来6h降水中心位置和强度较为一致。  相似文献   

11.
采用中尺度天气模式WRFV3.6.1模拟发生在贵州西南部山区大暴雨天气,由于复杂的地形条件,数值模拟难度大。通过对降雨实况、高空对比分析,WRF模式能够很好模拟此次大暴雨天气过程。在此基础上,结合贵州地形下利用高分辨率的数值结果进行天气学诊断分析,得出:(1)WRF能够较好地模拟贵州一次山地暴雨天气过程的大尺度环境、降水分布,只是在贵州中北部的累计降水略偏大。(2)此次降雨过程存在着明显的低层辐合、高层辐散的形势配置,这有利于垂直运动的发展,进而产生剧烈的强对流天气。在垂直速度上也体现着在降雨中心存在着强对流发展,伸展高度高,垂直区域广。(3)低层深厚的湿层为暴雨发生提供了充足的水汽条件、充足的对流有效位能和比湿提供了能量条件、不稳定层结和强烈的上升运动也给此次大暴雨提供了有利配置,使得中尺度对流系统得到很好地发展,进而引发强降水。(4)700 h Pa上的垂直螺旋度与降水落区有着较好的对应关系,在实际业务中可以用来确定降雨落区,为确定落区提供科学依据。  相似文献   

12.
利用NCEP/NCAR 的GFS再分析资料,结合中国气象局气象信息中心提供的全国自动站观测降水量资料、CMORPH卫星反演降水资料、FY2反演降水资料和雷达定量估测降水产品融合的降水资料,对造成2016年7月19~21日北京—天津—河北(以下简称京津冀)地区的极端降水天气系统动热力结构演变以及不稳定条件进行了诊断分析,揭示了京津冀地区上空不同气压层上天气尺度系统的配置,水汽条件,降水发生的垂直运动条件及不稳定层结演变情况。结果表明:(1)500 hPa呈现东高西低的环流形势,与700 hPa低涡和高低空急流相配合,副高北抬阻挡华北地区低涡的东移,导致低涡在京津冀地区停滞是此次降水发生的环流背景;(2)低层的低涡东移发展与中高层正涡度叠加对暴雨发生有重要作用;(3)引用位势散度分析对流不稳定度变化的原因表明,降水区后部的京津冀西南地区,低层的位势不稳定主要由位势散度的水平风垂直切变部分决定,代表水平风垂直切变和大气湿斜压的共同作用,弱降水区以及降水区后方的低层位势散度为负值,有利于该区域位势不稳定加强,强降水区及降水区前方位势散度为正值,抑制了位势不稳定发展。位势散度变化可以通过影响大气稳定度变化进而影响降水落区,位势散度的高值区对应了降水大值区,尤其是700 hPa位势散度对降水落区有很好的指示作用,可以结合位势散度的变化对降水落区进行预估。  相似文献   

13.
利用WRF模式对2010年8月21日发生在雅安地区的一次暴雨过程进行了数值模拟。对比分析模拟和实况发现,WRF模式较好的模拟了此次降水过程的时空分布,人而利用模式输出的高时空分辨率模拟资料对此次暴雨进行诊断分析。结果表明,青藏高原地形的阻挡作用使副热带高压西南缘的暖湿气流持续向四川盆地输送,在雅安地区上空700 hPa形成气旋性环流中心;主要降水时段内强降水中心从低层到高层均出现了强烈的上升运动,以及暴雨中心上空维持着高层辐散、低层辐合,高空为负涡度、低空为正涡度,且随暴雨过程发展对流层正涡度的加强作用为暴雨的生成和维持提供了有利的动力条件;对流层中低层接近饱和的空气、强烈的水汽输送以及水汽通量散度高低层的配置,为本次暴雨提供了充足的水汽条件;对流层低层大气存在明显的不稳定层结,中层为中性层结,这种对流性不稳定的维持为暴雨天气的发生提供了热力条件,有利于强降水过程的形成。  相似文献   

14.
利用常规观测资料、NCEP再分析资料、地形数据等,对2019年7月7—13日青藏高原东南侧滇西北地区持续性强降水天气过程进行综合分析。结果表明:西太平洋副热带高压控制中南半岛,伊朗高压稳定在印度西部附近,中高纬冷空气不断渗透南下,使印度东部低值系统长时间存在,其前部西南气流与副高西侧偏南气流汇合后持续影响滇西北,有利于孟加拉湾水汽向滇西北输送。强降水期间滇西北地区低层水汽通量散度呈负值,水汽辐合较强。整层大气低层辐合—高层辐散,上升运动强烈,抽吸作用明显;中低层大气高能高湿,处于对流不稳定状态。滇西北处于喇叭地形底部,两侧高大地形有利于引导水汽在滇西北汇聚,为持续强降水提供充足水汽;怒江州处于迎风坡,地形强迫抬升增强降水,使得怒江州降水量大于迪庆州和丽江市。  相似文献   

15.
利用中尺度模式WRF对2009年7月2—3日柳州大暴雨过程进行数值模拟,得到与实况相吻合结果。通过地形敏感性试验,研究了中尺度地形对这次暴雨过程的影响。结果表明:地形对这次大暴雨过程的雨带分布未起到决定性的作用,但对强降水的落区和强度有着重要影响。地形作用使西南暖湿气流所带来的水汽和热量在迎风坡堆积,融安融水一带中低层位温增加,导致其上空对流不稳定性增强,当与低层冷空气绕过山脉从西北路侵入时产生的垂直扰动叠加后,激发垂直上升运动强烈发展,从而触发了对流不稳定发展。而地形降低为"平台"后,山脉附近降水中心减弱,物理量场分析表明,由于缺乏地形的抬升作用,山脉附近垂直上升运动及正涡度强度均较有地形时减弱。  相似文献   

16.
低纬高原地形对强降水过程影响的数值试验研究   总被引:4,自引:0,他引:4  
在对云南2001年5月31日~6月2日的强降水过程较为真实模拟的基础上,对云南特有的地形对此次强降水过程的影响进行了对比试验.结果表明:红河河谷的喇叭口地形结构对此次云南强降水的落区和降水强度都有着不可忽视的作用,它不但能改变近地层气流的走向,而且对低层水汽通量散度分布也有一定的影响;同时,改变云南南部地形对此次强降水过程的气流走向和水汽分布也都有影响,但相对而言不如红河河谷的作用显著;而降低云南东北部地形,则使云南北部的近地层气流辐合线发生变化,它主要对此次云南北部地区的降水产生影响,但对该地区水汽输送影响不大.  相似文献   

17.
黄南地区两次雨(雪)过程对比分析   总被引:1,自引:0,他引:1  
利用常规气象观测资料、自动站资料和数值预报,对黄南地区2016年4月15和5月14日两次北部中雨南部大雪过程从天气形势、物理量场、数值预报等方面进行对比分析。结果表明:两次大降水的影响系统是新疆分裂短波槽东移与南支槽叠加共同作用,地面冷锋过境影响,冷空气的势力"5.14"强于"4.15"。两次大降水发生前,假相当位温场上大降水区均处于高能区中,能量锋区基本上位于青海的东部,涡度与散度场的配合,使低层辐合,高层辐散,中低层正涡度、高层负涡度的空间配置。新疆槽自带水汽与南支槽前水汽打通,给黄南提供充足水汽,水汽通量的辐合结合强的垂直上升运动使大降水产生。EC数值预报中提前24h预测出两个个例的影响系统相同,移动速度相近,仅冷空气强度不同;T639数值预报相对湿度为逐时段增大,且从低空到高空整层湿度在临近降水时80%,同时上游存在正涡度和负散度大值区配合东移,在降水开始前,黄南上游青海中部均存在东北西南向负垂直速度大值区,其东移使黄南地区垂直上升运动增强,总之,数值预报能够分析出有利于大降水产生的条件。  相似文献   

18.
弱冷空气与台风残留低压相互作用对一次大暴雨过程的影响   总被引:16,自引:4,他引:12  
杜惠良  黄新晴  冯晓伟  滕代高 《气象》2011,37(7):847-856
本文利用多普勒雷达资料、中尺度自动站雨量资料,结合经过控制试验的高精度数值模拟输出的诊断物理量,研究了2010年"莫兰蒂"台风低压环流在浙江中北部地区引发的大暴雨天气过程的物理原因。结果表明:这次大暴雨过程主要由"莫兰蒂"残留云系、副高边缘的暖湿气流和北方的弱冷空气共同影响产生,降水回波为积层混合性降水回波,降水效率高;杭州地区多个中小尺度系统的相互作用使得对流云团在该地区持续加强和发展,而强降水中心附近风速的加强和面积的扩大,使整个降水时段内不断有水汽输入降水区,为降水提供了丰沛的水汽条件;对流层中低层正的垂直螺旋度,低层负湿位涡区和中高层正湿位涡区的配置形成的不稳定能量在弱冷空气入侵时有利于造成较强烈的中尺度上升运动,加上降水引起的潜热释放对中高层空气的加热作用,从而能够形成持续的抽吸作用。这些条件能引起持续性的强降水,导致了杭州地区暴雨的发生。研究此次大暴雨过程,对预报有一定的指示意义。  相似文献   

19.
台风“桑美”的数值模拟和地形敏感性试验   总被引:9,自引:0,他引:9  
用WRF模式对0608号台风“桑美”进行了数值模拟研究,较为成功地模拟出了台风路径和降水,但模拟的台风中心气压远高于实况。为研究“桑美”登陆期间地形的抬升作用对其降水及结构的影响,通过改变特定区域内的地形高度设计了一组敏感性试验。结果表明,台风登陆过程中地形抬升作用对台风降雨量有显著的增幅作用;台风中心位势涡度、气流垂直上升速度、水平水汽通量散度明显增大;地形抬升机制在台风登陆时刻达到最强。  相似文献   

20.
一次西南涡特大暴雨的中尺度诊断分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用LAPS中尺度分析模式大气资料,对2008年7月一次西南涡暴雨过程进行天气学降水运动的中尺度诊断计算与分析。诊断计算包括:可降水量、层结不稳定能量、对流可降水量、水汽权重平均风速、水汽通量散度、云水、云冰总量及其通量散度和垂直速度与凝结函数降水率等。结果表明:“西南涡-切变线”系统的暴雨发生在暖湿气团与变性冷气团之间的中尺度风场辐合上升运动区,中尺度雨团发生在层结不稳定的暖湿气团一侧。计算的中尺度垂直运动与凝结函数降水率场,降水率为暴雨到特大暴雨。计算的水汽通量辐合降水率与凝结函数降水率不会完全重合,且水汽通量辐合既可致中尺度“雨”,又可成大尺度“云”,并且云水、云冰通量辐合/辐散,可解释为它们的“正”/“负”碰并增长,而碰并增长产生水凝物增量(降水率)也促成大暴雨。因此,在凝结函数降水率场中产生的中、小尺度对流雨团,加上水汽与云水、云冰通量辐合及其碰并增长,并且借助层结不稳定能量释放和可能产生的强迫“次级环流”及水汽与云水、云冰输送,是这次“西南涡-切变线”系统造成襄樊特大暴雨的天气学成因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号