首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一次西南涡特大暴雨的中尺度诊断分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用LAPS中尺度分析模式大气资料,对2008年7月一次西南涡暴雨过程进行天气学降水运动的中尺度诊断计算与分析。诊断计算包括:可降水量、层结不稳定能量、对流可降水量、水汽权重平均风速、水汽通量散度、云水、云冰总量及其通量散度和垂直速度与凝结函数降水率等。结果表明:“西南涡-切变线”系统的暴雨发生在暖湿气团与变性冷气团之间的中尺度风场辐合上升运动区,中尺度雨团发生在层结不稳定的暖湿气团一侧。计算的中尺度垂直运动与凝结函数降水率场,降水率为暴雨到特大暴雨。计算的水汽通量辐合降水率与凝结函数降水率不会完全重合,且水汽通量辐合既可致中尺度“雨”,又可成大尺度“云”,并且云水、云冰通量辐合/辐散,可解释为它们的“正”/“负”碰并增长,而碰并增长产生水凝物增量(降水率)也促成大暴雨。因此,在凝结函数降水率场中产生的中、小尺度对流雨团,加上水汽与云水、云冰通量辐合及其碰并增长,并且借助层结不稳定能量释放和可能产生的强迫“次级环流”及水汽与云水、云冰输送,是这次“西南涡-切变线”系统造成襄樊特大暴雨的天气学成因。  相似文献   

2.
按天气学方法,对2010年6月华南—江南持续暴雨作大尺度水汽场诊断分析,同时用三重嵌套WRF中尺度模式,模拟6月19—20日"高空槽-西南涡-切变线-低空急流"系统造成的江南特大暴雨过程,并且对模拟中尺度暴雨雨带和雨团作高时空分辨率诊断分析。诊断物理量包括:可降水量、对流可降水量、水汽及云水、云冰通量和通量散度、水汽权重平均风速、凝结函数降水率等。模拟与诊断分析表明,华南江南持续性暴雨大尺度水汽场特征是,因东亚"中高纬度正距平中低纬度负距平副高偏强偏西季风槽异常活动",造成孟加拉湾和南海上空的大尺度水汽进入大陆;中尺度特大暴雨发生在上游区有暖湿急流、并处于风场辐合的"水汽+云水+云冰"(总水物质)饱和高值区;因凝结函数降水率和总水物质通量散度降水率均为风场(散度场)中垂直运动产物,模拟的凝结函数降水率随模式时空分辨率提高而逐渐逼近于模式的显式降水物理过程,当模式分辨率达到4 km,可模拟出"西南涡切变线"系统中,有凝结函数降水率为1~3 mm·min~(-1)的中尺度雨团生消;且模式大气中的云水、云冰碰并增长降水率,可用其通量散度描述,并且应与凝结函数降水率相叠加。从而表明,模拟中尺度雨带和雨团发生、发展的天气学动力因素,只能是天气系统风场,即是模式的高时空分辨率散度场决定模式大气垂直运动,进而决定凝结函数降水率和总水物质通量散度降水率,它们一起构成了模式显式降水(率)。  相似文献   

3.
利用较高分辨率的非静力中尺度数值模式MM 5和NECP资料,对2003-08-28西北东部致洪暴雨天气过程进行数值模拟,重点研究α、β中尺度系统的发生发展和演变过程,对影响暴雨的物理量诊断分析。结果表明:α中尺度低涡越山后迅速生成发展,在有利背景条件下生成多个β中尺度系统,不同尺度系统共同作用形成本次区域性暴雨。强降水主要出现在低涡系统的发展阶段。暴雨区南侧600 hPa附近存在干冷层,上部大气层结稳定,抑制垂直扩散,有利于水汽和能量沿着低空向雨区集中输送。暴雨区上空水汽和能量以垂直输送为主,同时伴有大量潜能释放。位涡、散度、垂直速度等物理量的空间分布,有利于强对流天气发生。  相似文献   

4.
利用常规观测资料、FY-2E卫星观测的TBB资料,对2015年8月19日发生在林芝地区的一次暴雨过程进行天气分析,并利用中尺度数值模式WRF的模拟结果分析此次暴雨过程中尺度系统的结构特征。结果表明,此次暴雨过程发生在高原低涡切变的环流形势下,伴随辐合线发展的线状对流系统是此次暴雨发生的主要原因。WRF模式可较好地模拟出暴雨过程的环流形势和降水的落区、量级。西南风引导的暖湿气流为暴雨的发生、发展提供充沛的水汽条件;对中尺度结构的分析表明,低层辐合、高层辐散的结构以及在降水区存在的正涡度伴随强烈的上升运动为此次暴雨过程提供了有利的动力条件,假相当位温的分布能够为暴雨提供有利的热力条件,垂直螺旋度低层正中心的配置反映出大气的不稳定分布,有利于中尺度对流系统的发展与维持。  相似文献   

5.
利用常规气象观测数据、吉林省加密自动站观测数据、NCEP的1°×1°再分析资料和卫星云顶亮温数据,对2018年8月13—15日吉林省一次暴雨过程成因进行分析。结果表明:“三带”(西风带、副热带和热带环流)是暴雨产生的大尺度环流背景。大气整层水汽通量显示副热带高压外围的西南气流与远距离台风外围东南气流共同为暴雨输送充沛的水汽。降水有两个主要阶段,大气层结特征均为高层有正值位涡扰动并沿假相当位温锋区下滑,大气层结不稳定,水汽充沛,不稳定能量较大。降水第二阶段水汽输送、动热力条件、不稳定能量均小于第一阶段。云图表现特征为中尺度对流辐合体和中尺度对流云团,中尺度对流辐合体云团发展旺盛时,低层呈现气旋式涡度、中尺度辐合,高层呈反气旋式涡度、中尺度辐散。925 hPa低空切变线和地面辐合线是暴雨发生的中尺度触发条件。  相似文献   

6.
官晓东  刘玉  郑凯端  沈永生 《气象科技》2018,46(6):1221-1231
利用常规气象资料、自动气象站降水资料和NCEP再分析1°×1°等资料,对福建2017年6月初一次强降水过程进行多尺度分析。结果表明:(1)冷空气与暖湿气流相互作用形成持续性暴雨,中尺度系统的活动导致短时暴雨。(2)较大的风暴相对螺旋度,低层的正涡度和中低层的上升运动有利于中尺度对流系统(MCS)的发展和维持;强烈的热力不稳定和较强的垂直风切变是中尺度对流发展的环境特征。(3)强的整层水汽通量和水汽辐合为暴雨区提供水汽来源和水汽条件。(4)锋生的大小和位置对降水的强度和落区有很好的指示作用;低层以水平锋生为主,中层以垂直锋生为主,有利于成片暴雨的发生。(5)中尺度系统对天气尺度的水汽辐合和边界层对流不稳定条件有增幅作用;上下两支次级环流的上升支叠加,有利于低层不稳定能量的释放,促进中尺度系统的发展。  相似文献   

7.
利用WRF模式对2010年8月21日发生在雅安地区的一次暴雨过程进行了数值模拟。对比分析模拟和实况发现,WRF模式较好的模拟了此次降水过程的时空分布,人而利用模式输出的高时空分辨率模拟资料对此次暴雨进行诊断分析。结果表明,青藏高原地形的阻挡作用使副热带高压西南缘的暖湿气流持续向四川盆地输送,在雅安地区上空700 hPa形成气旋性环流中心;主要降水时段内强降水中心从低层到高层均出现了强烈的上升运动,以及暴雨中心上空维持着高层辐散、低层辐合,高空为负涡度、低空为正涡度,且随暴雨过程发展对流层正涡度的加强作用为暴雨的生成和维持提供了有利的动力条件;对流层中低层接近饱和的空气、强烈的水汽输送以及水汽通量散度高低层的配置,为本次暴雨提供了充足的水汽条件;对流层低层大气存在明显的不稳定层结,中层为中性层结,这种对流性不稳定的维持为暴雨天气的发生提供了热力条件,有利于强降水过程的形成。  相似文献   

8.
廖捷  谈哲敏 《气象学报》2005,63(5):771-789
2003年7月4~5日在江淮地区沿梅雨锋有一系列中尺度对流系统相继生成和强烈发展,导致了江淮地区特大暴雨的形成。该研究利用中尺度数值模式MM5对这次梅雨锋暴雨过程进行了数值模拟,在模拟结果的基础上重点分析了不同尺度天气系统相互作用对这次特大暴雨过程的影响作用。在这次特大暴雨过程中,位于梅雨锋北侧的东北—西南走向深厚、稳定的短波槽系统与槽前从西南移来的低涡系统相配合,加强了位于梅雨锋北侧的反气旋性扰动发展,从而导致梅雨锋北侧反气旋性涡旋的形成。该类反气旋性涡旋形成对江淮切变线的加强与维持起重要作用。中尺度对流系统的潜热释放首先导致梅雨锋低层切变线上的中尺度对流性涡旋(MCV)的形成,而中尺度对流性涡旋的形成进一步加强了切变线上的低层辐合,中尺度对流性涡旋消亡后,在切变线上形成低涡。梅雨锋附近主要存在4种不同垂直环流,它在降水的不同阶段具有不同的结构、配置与动力学作用。其中跨锋面、高层非地转两支垂直环流对锋区的对流扰动发展和暴雨形成最为重要,而降水发展可以调整锋区垂直环流的结构、配置,随降水的减弱,梅雨锋区的不同垂直环流系统又重新恢复到先前结构。梅雨锋上不同尺度、高度的天气系统之间的相互作用主要通过这些垂直环流系统调整实现。  相似文献   

9.
本文对2016年“7·19”华北特大暴雨进行观测分析和数值模拟,并设置了改变地形高度的敏感性试验,以探究该过程降水系统的发生发展机制以及太行山地形的作用。结果表明:(1)本次强降水过程发生在“东高西低”的有利环流形势下,受太行山地形和平原环流系统影响,低层东风急流造成强的对流性降水和低涡作用的叠置造成“7·19”华北地区持续性暴雨的维持和加强;(2)第一阶段为对流性降水,太行山东麓大气对流不稳定能量释放,大气逐渐转为稳定层结;第二阶段为低涡降水,涡度收支分析表明水平散度项和扭转项对低涡维持和发展起到了主要的正贡献,同时伴随有较强的上升运动和垂直风切变,垂直风切变的增强促使水平涡度向垂直涡度转变;(3)太行山地形在持续性暴雨中对两阶段降水、低涡和水汽的作用存在差异。地形高度敏感性试验中,地形高度增高对低层气流的阻挡和强迫抬升作用增强,使得地形降水增强,低涡路径东移,且强度增大。水平散度项使得对流层低层辐合上升运动增强,造成涡度的垂直输送,这是低涡发展和维持的重要原因之一。太行山地形阻挡截留东部平原水汽,且水汽回流加强,有利于太行山东麓水汽的输送与辐合。  相似文献   

10.
西北区东部一次暴雨的数值模拟试验   总被引:19,自引:23,他引:19  
运用双向嵌套的中尺度数值预报模式MM5,对1998年7月上旬西北区东部一次暴雨过程进行了高分辨率数值模拟和敏感性试验。结果表明,该模式能较好地模拟这次暴雨过程,对这次暴雨过程相关的中尺度系统的发生发展也作出了较成功的模拟;大尺度及积云对流尺度的凝结潜热在降水过程中是一个主要因子,潜热释放将加热中高层大气,促使高层大气辐散,低层辐合,垂直运动加强,导致较大的降水;初始时刻不同地区低层大气水汽含量的多寡直接对本次暴雨产生影响,并为这次暴雨提供了水汽源;地面水汽和感热的垂直输送为暴雨的发生发展补充了能量。  相似文献   

11.
基于ECMWF的ERA-40海表10m风场,对1958—2001年全球海表风速的变化趋势进行分析,主要分析了整体变化趋势、变化趋势的季节性差异、区域性差异、变化周期。结果表明:①近44年期间,全球海域海表风速整体上以0.0067m·s-1·a-1的速度显著性逐年线性递增。1958—1975年全球海域的海表风速变化较为平缓,1975—1983年递增趋势较为强劲,年平均海表风速的峰值出现在1999年,波谷出现在1975年。②全球海表风速的变化趋势表现出较大的区域性差异。递增趋势明显的区域主要分布于:南极、热带大西洋海域、北太平洋西风带海域、印度洋中低纬度海域、南半球60°S附近大面积带状海域;呈显著性逐年递减的区域主要分布于:赤道中东太平洋、胡安·费尔南德斯群岛附近海域、南大西洋西风带的中部海域,以及一些零星海域。③全球海表风速的变化趋势表现出较大的季节性差异。在各月均表现出显著的线性递增趋势,以1月的递增趋势最为强劲,达到0.0103m·s-1·a-1,7月的递增趋势弱于其余月份,约0.0033m·s-1·a-1。④全球海域海表风速存在明显的2.2~4.3年变化周期,以及6.5年以上长周期震荡。  相似文献   

12.
模拟台风Ewiniar(2006)内部扰动的时空变化特征   总被引:1,自引:1,他引:0  
在使用WRF(V2.2)模式双向移动嵌套方案对台风Ewiniar模拟结果的基础上,利用空间上的离散功率谱和时间上的连续功率谱、最大熵谱方法对Ewiniar内部扰动的时空变化特征作简要的分析。结果表明:台风内部波动在空间上以长波分量占优,距台风中心越近,长波分量的比重越大,而台风外围的短波分量则有所增加;Ewiniar内部的振荡现象具有非对称特征,这种非对称特征在对流层中高层及台风前移的左右两侧的眼壁内表现得非常明显,越往台风外围、越往对流层低层越不明显;对流层低层的台风眼壁内部,无论是台风前移的左侧还是右侧,低频振荡总是占很大优势。  相似文献   

13.
The subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) is evaluated using a full set of hindcasts generated from the Beijing Climate Center Atmospheric General Circulation Model version 2.2 (BCC_AGCM2.2). It is shown that the predictability of the monthly mean AO/NAO index varies seasonally, with the highest predictability during winter (December–March) and the lowest during autumn (August–November), with respect to both observations and BCC_AGCM2.2 results. As compared with the persistence prediction skill of observations, the model skillfully predicts the monthly mean AO/NAO index with a one-pentad lead time during all winter months, and with a lead time of up to two pentads in December and January. During winter, BCC_AGCM2.2 exhibits an acceptable skill in predicting the daily AO/NAO index of ∼9 days, which is higher than the persistence prediction skill of observations of ∼4 days. Further analysis suggests that improvements in the simulation of storm track activity, synoptic eddy feedback, and troposphere–stratosphere coupling in the Northern Hemisphere could help to improve the prediction skill of subseasonal AO/NAO variability by BCC_AGCM2.2 during winter. In particular, BCC_AGCM2.2 underestimates storm track activity intensity but overestimates troposphere–stratosphere coupling, as compared with observations, thus providing a clue to further improvements in model performance.  相似文献   

14.
金属氧化物避雷器(MOV)对电子设备和网络系统提供有效防雷保护的同时也出现了因MOV失效所导致的诸多问题,其中最严重的是导致起火、爆炸。分析了MOV起火的原因,阐述了温度保险丝的工作原理,提出运用温度保险丝对MOV进行过热保护,防止MOV起火的观点。为检测温度保险丝的性能,设计了温度保险丝的过电流耐受冲击试验、限制电压试验和热稳定性试验。试验结果表明:使用温度保险丝作为电涌保护器内置脱扣装置时,能够耐受雷电流的冲击;压敏电压的变化率在10%以内,限制电压仅上升2.2%,说明温度保险丝并不会影响MOV的限压性能;在MOV过热时,温度保险丝能迅速熔断,切断MOV与主电路的连接,从而保护系统安全。还对温度保险丝和低温焊锡的脱扣性能进行比较,将二者的脱扣温度与断开时间进行了分析,当脱扣时的温度小于130℃时,温度保险丝较低温焊锡动作及时,具有一定的优越性。  相似文献   

15.
The UK Met Office has introduced a new scheme for its urban tile in MOSES 2.2 (Met Office Surface Exchange Scheme version 2.2), which is currently implemented within the operational Met Office weather forecasting model. Here, the performance of the urban tile is evaluated in two urban areas: the historic core of downtown Mexico City and a light industrial site in Vancouver, Canada. The sites differ in terms of building structures and mean building heights. In both cases vegetation cover is less than 5%. The evaluation is based on surface energy balance flux measurements conducted at approximately the blending height, which is the location where the surface scheme passes flux data into the atmospheric model. At both sites, MOSES 2.2 correctly simulates the net radiation, but there are discrepancies in the partitioning of turbulent and storage heat fluxes between predicted and observed values. Of the turbulent fluxes, latent heat fluxes were underpredicted by about one order of magnitude. Multiple model runs revealed MOSES 2.2 to be sensitive to changes in the canopy heat storage and in the ratio between the aerodynamic roughness length and that for heat transfer (temperature). Model performance was optimum with heat capacity values smaller than those generally considered for these sites. The results suggest that the current scheme is probably too simple, and that improvements may be obtained by increasing the complexity of the model.  相似文献   

16.
First,based on routine meteorological data,the synoptic characteristics of a heavy warm-sector rainfall that occurred on June 13,2008 in the Pearl River Delta were analyzed.Second,a mesoscale numerical model,Weather Research and Forecasting(WRFV2.2),was used to simulate the heavy rainfall. Diagnostic analyses were done of moist potential vorticity(MPV)for its horizontal components(MPV2) and vertical components(MPV1)based on the simulation results of WRFV2.2 to identify the mechanism of the rainfall development.The results showed that the heavy rainfall occurred when there were high MPV1 in the upper levels and low MPV1 and high MPV2 in the lower levels.Disturbances of high MPV1 in the upper levels came from the southwest or northwest,those of low MPV1 in the lower levels came from the southwest,and those of high MPV2 came from the south.Disturbances of low MPV1 at low levels were the direct cause of convective instability.Enhanced vertical shear of meridional wind led to increased MPV2 at lower levels,strengthened baroclinicity,and active warm and wet flows.These distributions of MPV helped to trigger the release of unstable energy and produce warm-sector heavy rainfall.As it integrates the evolution of dynamic and thermal fields,MPV is able to reveal the development of this heavy rainfall effectively.  相似文献   

17.
利用Doppler雷达产品,结合常规观测资料对2008年7月25日中国准噶尔盆地南缘冰雹、强降水的雷达回波结构演变特征进行分析。结果表明:此次冰雹、强降水天气过程发生在西伯利亚至巴尔喀什湖冷槽东南象限的对流不稳定层结中,近低层至地面有中尺度辐合切变线。强风暴的演变可归为"逗点—‘人’字形—螺旋形"3个回波阶段,相应径向速度图上出现"逆风区"、中气旋和辐合区。冰雹的雷达回波强度中心值超过65 dBz6,0 dBz回波顶高为5.5 km,65 dBz回波顶高为3.0 km。垂直累积液态含水量由10 kg·m^-2增至70 kg·m^-2。强降水的雷达回波强度中心值达60 dBz,55 dBz回波顶高为3.7 km6,0 dBz回波顶高为2.2 km。垂直累积液态含水量由15 kg·m^-2增加至55kg·m^-2。Doppler雷达产品对冰雹、强降水天气监测预警具有指示意义。  相似文献   

18.
利用1951—2000年NCEP/NCAR再分析资料、英国气象局全球海温资料、中国气象局整编的160站气温资料,采用EOF、合成、相关、奇异值分解等方法讨论了印度洋偶极子(Indian Ocean Di-pole,IOD)对南方夏季降水的影响。结果表明:印度洋海温异常,激发了大气环流的异常,从而导致南方降水异常。当印度洋海温一致变化时,南方降水分布也呈一致;当印度洋上海温距平偶极振荡时,长江流域与华南也出现偶极变化的现象。IOD正位相年,华南降水异常偏多;IOD负位相年,长江流域降水偏多。  相似文献   

19.
珠三角一次暖区强降水过程湿位涡的演变特征   总被引:4,自引:0,他引:4  
首先利用常规资料分析了2008年6月13日发生在珠江三角洲地区的一次暖区强降水的天气背景,再借助于高时空分辨率的WRF中尺度数值模拟结果,对等压面湿位涡在强降水过程中的演变进行了诊断分析,结果表明:暴雨出现在高层高值MPV1和低层低值MPV1、低层高值MPV2的配置区,本次暴雨高层高值MPV1扰动来自西北和西南方向,低...  相似文献   

20.
This study evaluates performance of Madden–Julian oscillation (MJO) prediction in the Beijing Climate Center Atmospheric General Circulation Model (BCC_AGCM2.2). By using the real-time multivariate MJO (RMM) indices, it is shown that the MJO prediction skill of BCC_AGCM2.2 extends to about 16–17 days before the bivariate anomaly correlation coefficient drops to 0.5 and the root-mean-square error increases to the level of the climatological prediction. The prediction skill showed a seasonal dependence, with the highest skill occurring in boreal autumn, and a phase dependence with higher skill for predictions initiated from phases 2–4. The results of the MJO predictability analysis showed that the upper bounds of the prediction skill can be extended to 26 days by using a single-member estimate, and to 42 days by using the ensemble-mean estimate, which also exhibited an initial amplitude and phase dependence. The observed relationship between the MJO and the North Atlantic Oscillation was accurately reproduced by BCC_AGCM2.2 for most initial phases of the MJO, accompanied with the Rossby wave trains in the Northern Hemisphere extratropics driven by MJO convection forcing. Overall, BCC_AGCM2.2 displayed a significant ability to predict the MJO and its teleconnections without interacting with the ocean, which provided a useful tool for fully extracting the predictability source of subseasonal prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号