首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《气象》2021,(9)
利用2016—2018年祁连山区中东部11个站的地基GPS反演的大气可降水量(以下简称GPS/PWV),分析了大气可降水量的时空分布、地带性和垂直变化特征。结果表明:与张掖和民勤探空实测资料计算的PWV(以下简称RS/PWV)相比,GPS/PWV均方根误差和偏差平均值分别为2.1 mm和1.07 mm,GPS/PWV略大于RS/PWV且两者相关系数平均值达到0.97。祁连山中东部PWV日最大值出现在11 — 16时,日最小值出现在01—05时;PWV的月最大值出现在8月,月最小值出现在1—2月;PWV的季节分布为夏季秋季春季冬季;PWV高值区主要分布在祁连山东南部,祁连山中部的刚察、民和为明显低值区;祁连山中段PWV低于东段。PWV地带性和垂直变化特征明显,与海拔高度的相关系数达到了—0.77。PWV随经度自西向东,逐渐升高;PWV随纬度从南往北,存在着"高—低—高"的变化特征;PWV的空间分布和季节变化与季风影响相关。  相似文献   

2.
利用2011—2012年3—5月江西省53个地基GPS观测站数据反演了大气可降水量,探讨了GPS/PWV的精度,分析了江西省春季大气可降水量的时空分布特征及其在人工增雨作业中的演变等。结果表明:江西省整个春季的水汽主要呈南多北少、西高东低分布,各站的GPS/PWV时间分布变化总体趋势较一致,日变化特征均呈先上升后下降趋势。在实际的人工增雨作业中,火箭催化作业前,GPS/PWV呈明显的上升趋势,作业后GPS/PWV快速减小,降水随之出现。  相似文献   

3.
应用2009年4月—2014年3月浙江省GPS-PWV产品等资料分析得出,2013年梅期PWV比入出梅前后整体偏高,体现出水汽季节性变化,能帮助分析和确定入出梅时间,梅期较大降水过程基本都对应PWV高值和上升阶段,PWV波谷阶段均没有降水出现。1323号强台风"菲特"影响期间PWV平均值为35~75 mm,没有异常偏高,各阶段PWV及其梯度的空间分布与水汽输送关系密切,较大降水基本发生在PWV高值或PWV梯度较大的区域。宁波地区GPS-PWV月际分布为:6—8月PWV值较高,8月最高,1—3月和12月PWV值较低,1月最低;根据临界成功指数CSI最高为原则得出的宁波地区最佳阈值预报方法经检验表现出较好的预报能力。  相似文献   

4.
基于地基GPS遥感的大连地区大气水汽总量变化特征   总被引:1,自引:0,他引:1  
基于大连地区地基GPS综合观测网遥感反演了大气水汽总量(PWV),分析了大连地区PWV空间变化、逐月变化和日变化特征以及PWV变化与降水的关系,并利用大连本站2005-2011年的探空资料拟合了大连地区地面温度和大气加权平均温度的关系。结果表明:大连本站的PWV与探空积分的水汽含量相关系数达到0.988,均方根误差为2.5 mm。大连地区PWV南北分布比较均匀;PWV最大的月份为7-8月,最大月平均值约40 mm,PWV最小的月份为1月,最小月平均值小于4 mm;大连地区PWV春季和冬季日变化幅度约0.5 mm,夏季和秋季日变化幅度约1.3 mm。夏季和秋季的PWV日变化呈单峰型,春季和冬季的PWV日变化呈多峰型; 在降水发生前8 h 大气水汽总量有明显增加过程,对降水的发生有指示作用。  相似文献   

5.
云南地基GPS观测大气可降水量变化特征   总被引:4,自引:1,他引:3  
利用2007年云南地基GPS站点观测资料,分析GPS反演的大气可降水量(PWV)变化特征,并用探空、实际降水量资料和GPS反演结果进行比较。结果表明:GPS/PWV能反映云南降水的季节变化特征,海拔较低的测站普遍比同期海拔较高的测站测得的GPS/PWV值高;GPS/PWV值与探空得到的大气水汽总量随时间演变趋势基本一致,其相关系数均达0.89;GPS/PWV变化周期和实际降水发生的周期基本相同,降水大多为GPS/PWV值连续增加达到峰值(或从峰值开始下降)后开始;GPS/PWV上升幅度较大或位于高位可作为连续性强降水过程出现的预报指标,但使用GPS/PWV峰值作预报指标时,还应考虑季节因素。  相似文献   

6.
于晓晶  唐永兰  于志翔  赵玲  姚俊强 《气象》2019,45(12):1691-1699
基于新疆天山山区2012—2015年夏季的GPS/PWV资料、探空资料和逐日降水资料,运用多种统计方法,分析天山山区夏季大气可降水量(PWV)的时空变化特征,并初步探讨其原因。从夏季平均值分布来看,天山山区各站PWV分布存在明显差异,与海拔高度呈显著负相关关系;且低海拔站点PWV比高海拔站点表现出更大的发散性和可变性,有雨日PWV的极值、中位数等整体高于无雨日。天山山区夏季PWV表现出显著的月变化和日变化。大部分站点7月PWV最大,6月次之,8月最少;一日之中在10时左右出现日最大值,个别站点表现出不同的变化特征,且有雨日和无雨日也存在一定差异。天山山区各站夏季降水量与其PWV关联性不明显,降水量和水分循环指数均与海拔高度呈显著正相关关系。这可能是因为夏季山区高海拔站点更易产生局地对流性降水,从而增加水分循环次数所致。  相似文献   

7.
湖北地基GPS大气可降水量变化特征分析及应用   总被引:2,自引:0,他引:2  
利用探空资料、地基GPS/MET水汽监测资料,对恩施、宜昌、武汉三站地基GPS反演大气可降水量(GPS Precipitable Water Vapor,GPS/PWV)与探空进行了对比,表明GPS/PWV与探空RS/PWV具有良好的一致性。湖北省17站3 a GPS/PWV资料分析表明,GPS/PWV具有明显的月变化及日变化特征,分布具有从南往北逐渐递减,从西至东逐渐增加的特点。强降水个例分析表明GPS/PWV峰值略早于降水以及雷达回波峰值出现时间,高时空分辨率的GPS/PWV配合雷达对天气形势的分析以及降水的判断有一定的指导作用。  相似文献   

8.
GPS遥感大气可降水量在降水天气过程分析中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
应用GPS探测的大气可降水量(PWV)对2010年大连地区降水过程中水汽变化特征进行了分析。结果表明:GPS/PWV资料能反映大气中水汽的时间和空间变化,其变化特征与降水有较好的对应关系;不同性质的降水过程PWV变化特征明显不同,稳定性降水过程中PWV变化较为平缓,呈明显的单峰结构,对流性降水过程水汽变化程度剧烈,呈震荡趋势,而混合型降水具有两种性质降水的共同特征;降水过程中GPS/PWV阈值表明,GPS/PWV资料在降水天气预报方面有一定的应用价值。  相似文献   

9.
利用广东省GPS地基网探测得到的大气可降水量数据,结合多种探测资料、NCEP客观分析资料等进行分析,检验地基GPS探测PWV的精度与误差,并对PWV在2014年前汛期一次强对流过程的变化特征进行分析。检验结果表明,GPS探测PWV与探空PWV之间均方根误差在3.05~4.07 mm范围内,相关系数在0.92~0.95范围内,符合业务使用的需求。相比于NCEP客观分析资料,GPS探测PWV时间分辨率更高、准确性更好,因此尝试使用风廓线雷达、无线电探空数据与PWV进行融合,开发单站比湿、水汽通量等水汽产品,探测局地水汽的增长,反映强对流天气过程期间低空水汽输送通道的建立。此外,PWV空间分布的大值区能够揭示水汽辐合区,其变化同时也预示着雷暴单体和多单体雷暴发展和传播方向的变化。  相似文献   

10.
利用2010年1月~2011年12月四川JICA项目获得的地基GPS观测资料和地面自动站资料,分析四川省内GPS/PWV变化特征,结果表明:GPS/PWV能较好反映各站降水的季节变化,海拔高度对GPS/PWV值有显著影响作用;全年夜间GPS/PWV值大于日间,秋季高原上夜间GPS/PWV值小于日间;在主汛期,GPS/PWV能作为降水出现概率较高的判据,降水多出现在PWV值大于基准值时段;PWV变化周期与降水发生周期有很好的对应关系,大多数为PWV值连续增加达到峰值阶段或由峰值开始下降阶段开始降水。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号