首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010   总被引:3,自引:0,他引:3  
The Arctic sea-ice extent has shown a declining trend over the past 30 years. Ice coverage reached historic minima in 2007 and again in 2012. This trend has recently been assessed to be unique over at least the last 1450 years. In the summer of 2010, a very low sea-ice concentration(SIC) appeared at high Arctic latitudes—even lower than that of surrounding pack ice at lower latitudes. This striking low ice concentration—referred to here as a record low ice concentration in the central Arctic(CARLIC)—is unique in our analysis period of 2003–15, and has not been previously reported in the literature. The CARLIC was not the result of ice melt, because sea ice was still quite thick based on in-situ ice thickness measurements.Instead, divergent ice drift appears to have been responsible for the CARLIC. A high correlation between SIC and wind stress curl suggests that the sea ice drift during the summer of 2010 responded strongly to the regional wind forcing. The drift trajectories of ice buoys exhibited a transpolar drift in the Atlantic sector and an eastward drift in the Pacific sector,which appeared to benefit the CARLIC in 2010. Under these conditions, more solar energy can penetrate into the open water,increasing melt through increased heat flux to the ocean. We speculate that this divergence of sea ice could occur more often in the coming decades, and impact on hemispheric SIC and feed back to the climate.  相似文献   

2.
Seasonal predictions of Arctic sea ice have typically been based on statistical regression models or on results from ensemble ice model forecasts driven by historical atmospheric forcing. However, in the rapidly changing Arctic environment, the predictability characteristics of summer ice cover could undergo important transformations. Here global coupled climate model simulations are used to assess the inherent predictability of Arctic sea ice conditions on seasonal to interannual timescales within the Community Climate System Model, version 3. The role of preconditioning of the ice cover versus intrinsic variations in determining sea ice conditions is examined using ensemble experiments initialized in January with identical ice?Cocean?Cterrestrial conditions. Assessing the divergence among the ensemble members reveals that sea ice area exhibits potential predictability during the first summer and for winter conditions after a year. The ice area exhibits little potential predictability during the spring transition season. Comparing experiments initialized with different mean ice conditions indicates that ice area in a thicker sea ice regime generally exhibits higher potential predictability for a longer period of time. In a thinner sea ice regime, winter ice conditions provide little ice area predictive capability after approximately 1?year. In all regimes, ice thickness has high potential predictability for at least 2?years.  相似文献   

3.
The data-collection campaign for the 2008 International Polar Year–Circumpolar Flaw Lead System Study saw the Canadian Coast Guard Ship (CCGS) Amundsen, a research icebreaker, overwinter in high-concentration unconsolidated sea ice in Amundsen Gulf. Environmental monitoring continued into the open-water season. During this period, the Amundsen registered five relatively deep mean sea-level pressure minima (less than 100?kPa). Three were selected for further analysis based on season and the nature of the underlying ocean or sea-ice surface: (1) a winter pressure minimum over unconsolidated sea ice, (2) a spring pressure minimum which likely contributed to the break-up of the sea-ice cover on Amundsen Gulf, and (3) a summer pressure minimum over open water. The characteristics of these pressure minima and the impact of their passage on the atmospheric boundary layer and on the sea-ice cover as they crossed Amundsen Gulf were examined. Several features were revealed by the analysis. (1) The winter and summer pressure minima were migratory cyclones accompanied by Arctic frontal waves with characteristics very similar to the polar frontal waves associated with the migratory cyclones found at more southerly latitudes, whereas the spring pressure minimum was attributed to an Arctic frontal trough of low pressure with the cyclonic centre remaining south of the Gulf. (2) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring disrupted the equilibrium that had been established during more settled periods between the atmospheric boundary layer and the mosaic surface (leads, polynyas, and sea ice); however, equilibrium was quickly re-established. (3) In summer, the thermal structure of the lower atmospheric boundary layer persisted through the passage of the frontal-wave cyclone over the open-water surface. (4) The passage of the frontal-wave cyclone in winter and the frontal trough of low pressure in spring modified the mesoscale sea-icescape.  相似文献   

4.
Changes in Arctic clouds during intervals of rapid sea ice loss   总被引:2,自引:0,他引:2  
We investigate the behavior of clouds during rapid sea ice loss events (RILEs) in the Arctic, as simulated by multiple ensemble projections of the 21st century in the Community Climate System Model (CCSM3). Trends in cloud properties and sea ice coverage during RILEs are compared with their secular trends between 2000 and 2049 during summer, autumn, and winter. The results suggest that clouds promote abrupt Arctic climate change during RILEs through increased (decreased) cloudiness in autumn (summer) relative to the changes over the first half of the 21st century. The trends in cloud characteristics (cloud amount, water content, and radiative forcing) during RILEs are most strongly and consistently an amplifying effect during autumn, the season in which RILEs account for the majority of the secular trends. The total cloud trends in every season are primarily due to low clouds, which show a more robust response than middle and high clouds across RILEs. Lead-lag correlations of monthly sea ice concentration and cloud cover during autumn reveal that the relationship between less ice and more clouds is enhanced during RILEs, but there is no evidence that either variable is leading the other. Given that Arctic cloud projections in CCSM3 are similar to those from other state-of-the-art GCMs and that observations show increased autumn cloudiness associated with the extreme 2007 and 2008 sea ice minima, this study suggests that the rapidly declining Arctic sea ice will be accentuated by changes in polar clouds.  相似文献   

5.
The relative importance of regional processes inside the Arctic climate system and the large scale atmospheric circulation for Arctic interannual climate variability has been estimated with the help of a regional Arctic coupled ocean-ice-atmosphere model. The study focuses on sea ice and surface climate during the 1980s and 1990s. Simulations agree reasonably well with observations. Correlations between the winter North Atlantic Oscillation index and the summer Arctic sea ice thickness and summer sea ice extent are found. Spread of sea ice extent within an ensemble of model runs can be associated with a surface pressure gradient between the Nordic Seas and the Kara Sea. Trends in the sea ice thickness field are widely significant and can formally be attributed to large scale forcing outside the Arctic model domain. Concerning predictability, results indicate that the variability generated by the external forcing is more important in most regions than the internally generated variability. However, both are in the same order of magnitude. Local areas such as the Northern Greenland coast together with Fram Straits and parts of the Greenland Sea show a strong importance of internally generated variability, which is associated with wind direction variability due to interaction with atmospheric dynamics on the Greenland ice sheet. High predictability of sea ice extent is supported by north-easterly winds from the Arctic Ocean to Scandinavia.  相似文献   

6.
Simulations of the Arctic sea ice cover over the last 32 years generated by the HadGEM1 coupled climate model are able to capture the observed long term decline in mean September ice extent. HadGEM1 is also capable of producing an episode of low September ice extent of similar magnitude to the anomalously low extent observed in 2007. Using a heat budget analysis, together with diagnostics partitioning the changes in ice and snow mass into thermodynamic and dynamic components, we analyse the factors driving the long term decline in the ice mass and extent as well as those causing the modelled low ice event. The long term decline in the mass of ice and snow in HadGEM1 is largely due to extra melting during the summer, partly at the top surface of the ice, and partly via extra heating from the ocean as it warms due to the ice retreat. The episode of low summer ice extent is largely driven by the synoptic conditions over the summer moving the ice across and out of the Arctic basin, and also due to pre-conditioning of the snow and ice which is thinner than usual in the Eastern Arctic at the start of the melt season. This case study demonstrates that although HadGEM1 does not capture the persistent dipole pressure anomaly observed during the summer of 2007, it represents broadly similar mechanisms of generating a low ice extent.  相似文献   

7.
In our previous study,a statistical linkage between the spring Arctic sea ice concentration(SIC)and the succeeding Chinese summer rainfall during the period 1968–2005 was identified.This linkage is demonstrated by the leading singular value decomposition(SVD)that accounts for 19%of the co-variance.Both spring SIC and Chinese summer rainfall exhibit a coherent interannual variability and two apparent interdecadal variations that occurred in the late 1970s and the early 1990s.The combined impacts of both spri...  相似文献   

8.
The predictability of the Arctic sea ice is investigated at the interannual time scale using decadal experiments performed within the framework of the fifth phase of the Coupled Model Intercomparison Project with the CNRM-CM5.1 coupled atmosphere–ocean global climate model. The predictability of summer Arctic sea ice extent is found to be weak and not to exceed 2 years. In contrast, robust prognostic potential predictability (PPP) up to several years is found for winter sea ice extent and volume. This predictability is regionally contrasted. The marginal seas in the Atlantic sector and the central Arctic show the highest potential predictability, while the marginal seas in the Pacific sector are barely predictable. The PPP is shown to decrease drastically in the more recent period. Regarding sea ice extent, this decrease is explained by a strong reduction of its natural variability in the Greenland–Iceland–Norwegian Seas due to the quasi-disappearance of the marginal ice zone in the center of the Greenland Sea. In contrast, the decrease of predictability of sea ice volume arises from the combined effect of a reduction of its natural variability and an increase in its chaotic nature. The latter is attributed to a thinning of sea ice cover over the whole Arctic, making it more sensitive to atmospheric fluctuations. In contrast to the PPP assessment, the prediction skill as measured by the anomaly correlation coefficient is found to be mostly due to external forcing. Yet, in agreement with the PPP assessment, a weak added value of the initialization is found in the Atlantic sector. Nevertheless, the trend-independent component of this skill is not statistically significant beyond the forecast range of 3 months. These contrasted findings regarding potential predictability and prediction skill arising from the initialization suggest that substantial improvements can be made in order to enhance the prediction skill.  相似文献   

9.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

10.
全球气候变暖中南北半球海冰变化的差异   总被引:4,自引:0,他引:4  
吕晓娜  方之芳  黄勇勇  刘琦 《气象》2009,35(1):87-96
应用海冰面积资料,分析在全球气候变暖下,南北半球海冰季节和年际变化的差异,结果表明:冬季南半球海冰面积为北半球的1.13倍,而夏季仅为北半球的2/5,南半球海冰的季节变化比北半球更为显著,其季节振幅为北半球的1.6倍.1979--2006年,北半球海冰总面积呈显著减少趋势,夏秋季最快,特别在1990年代中后期以来,减少尤为迅速;夏秋季,整个区域海冰为均一的减少趋势,北冰洋靠近北太平洋的近海变化最为迅速,冬春季,主要发生在北太平洋海域.南半球海冰自1980年代初以来有所增多,四季整个区域海冰并未呈均一的减少趋势,而是有一显著减少中心,位于南极半岛附近,两个增多中心,分别位于罗斯海外围和西南印度洋一带.随夏一秋一冬一春的季节转换,3个中心区域位置存在东移和返回的过程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号