首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work deals with the influence of changes of atmospheric circulation on observed trends of 11 climatic elements at 21 stations in the Czech Republic in the period 1961–1998. Atmospheric circulation in central Europe is described by the German (Hess-Brezowsky) and Czech-Slovak (Brádka’s) subjective catalogues of synoptic types. In the study period there is a strong downward trend in the occurrence of anticyclonic types in Brádka’s catalogue in all seasons, this trend being most prominent in autumn. Westerly and northwesterly types become more frequent in autumn and winter, less frequent in spring and summer under both classifications. In the Hess-Brezowsky catalogue, the occurrence of anticyclonic types increases in winter, spring, and summer. To assess the effect of circulation changes on observed climate trends we have used the method of “hypothetical” seasonal trends that are calculated from a daily series, constructed by assigning the long-term monthly average of the given climatic element under a specific circulation type to each day classified with this type. The ratio of these circulation-conditioned trends and observed seasonal trends shows that changes in atmospheric circulation are the primary cause of massive winter warming and autumn cooling, which is connected with increasing precipitation and humidity. Summer climate trends are unrelated to changes in atmospheric circulation. Simultaneous use of more circulation classifications for the detection of climatic changes is highly recommended, as the long-term circulation trends depend on the catalogue applied.  相似文献   

2.
Summary Changes in atmospheric circulation over Europe since 1958 were examined using both objective (modes of low-frequency variability and objective classification of circulation types) and subjective (Hess-Brezowsky classification of weather types) methods. The analysis was performed with an emphasis on the differences between the winter (DJF) and summer (JJA) seasons, and between objectively and subjectively based results. Majority of the most important changes in atmospheric circulation are same or similar for the objective and subjective methods: they include the strengthening of the zonal flow in winter since the 1960s to the early 1990s; the increase (decrease) in frequency of anticyclonic (cyclonic) types in winter from the late 1960s to the early 1990s, with a subsequent decline (rise); and the sharp increase in the persistence (measured by the mean residence time) of all groups of circulation types in winter around 1990 and of anticyclonic types in summer during the 1990s. Differences between the findings obtained using the objective and subjective methods may result from the intrinsically different approach to the classification (e.g. the Hess-Brezowsky weather types have a typical duration of at least 3 days while objective types typically last 1–3 days). Generally, changes in atmospheric circulation which have taken place since the 1960s were more pronounced in winter than in summer. The most conspicuous change seems to be the considerable increase in the persistence of circulation types during the 1990s, which may be also reflected in the increase in the occurrence of climatic extremes observed in Europe during recent years.  相似文献   

3.
This study presents an analysis of the relationship between winter large-scale circulation and surface meteorological conditions over Greece for the period 1979–2009. The adopted methodology involves the application of an automated atmospheric circulation classification scheme based on the self-organizing map approach. The impact of each of the identified relevant 19 winter atmospheric circulation patterns on local meteorological condition is examined at seven sites by calculating the corresponding differences from the mean meteorological conditions. The conditional transition probabilities of circulation patterns indicate the existence of increased 1-day persistence, especially for the anticyclonic and the pattern related to Genoa depressions. Positive temperature anomalies are observed for the cyclonic patterns, while negative anomalies are attributed to the effect of anticyclonic circulation.  相似文献   

4.
利用1979—2012年Hadley中心海表温度、中国2 474个台站逐日降水和NCEP/NCAR全球再分析资料,分析了不同类型ENSO事件秋冬季和次年春季中国南方地区10~30 d降水低频变率的变化特征。结果表明,中国南方地区10~30 d降水低频变率对不同类型ENSO事件的响应存在显著的季节差异。EP型El Ni1o的冬季和次年春季,低频降水变率显著增强; CP型El Ni1o秋冬季低频降水强度呈现相反的异常,秋季低频降水偏弱,而冬季则偏强; La Ni1a事件期间中国南方低频降水变率的变化较小且不稳定。进一步分析发现,ENSO对南方地区10~30 d低频降水变率的影响与西北太平洋地区季节平均大气环流背景场对ENSO的响应密切相关。相比正常年份,EP型El Ni1o冬春季菲律宾反气旋性异常环流的强度较强且范围较大,其西侧的异常西南风向中国南方地区输送了大量水汽,从而有利于低频降水的增强; CP型El Ni1o年秋季西北太平洋表现为气旋性环流异常,抑制了热带水汽向东亚大陆的输送,而冬季却产生了与EP型El Ni1o年类似的异常反气旋环流,只是强度有所减弱,因此中国南方地区低频降水强度在秋冬季呈相反异常。La Ni1a年菲律宾附近虽然存在气旋性环流异常,但强度较弱,因而我国南方地区低频降水变率的响应也较弱。  相似文献   

5.
The aim of this paper is to investigate different aspects of the seasonal-to-interannual temperature variability in Eastern Patagonia, the southernmost area of South America, east of the Andes Cordillera. Homogenous regions of seasonal variability and the atmospheric circulation patterns associated with warm and cold conditions in each of them are described in this study. Relationships between temperature in Eastern Patagonia and that registered in other areas of southern South America are also addressed. Results show that the northern and southern areas of Eastern Patagonia have different temperature variability in summer and autumn whereas the temperature variability tends to be more homogeneous within the region during winter and spring. Warm (cold) conditions in the northern areas are associated with reinforced (weakened) westerlies in summer, winter and spring whereas northerly (southerly) advections of warm (cold) air toward the region produce such conditions in autumn. Temperature in the southern portion of Eastern Patagonia is affected by anticyclonic (cyclonic) anomalies that enhance (reduce) the incoming solar radiation and induce reinforced (weakened) westerlies promoting warm (cold) conditions in the region. Furthermore, cyclonic (anticyclonic) anomalies at subpolar latitudes hinder (favor) outbreaks of cold air increasing (decreasing) the temperature over areas of Eastern Patagonia. The circulation anomalies associated with warm (cold) conditions in Eastern Patagonia also promote cold (warm) conditions over areas of northern Argentina, Paraguay and southern Brazil. Consequently, a dipole of temperature is detected in southern South America with centers of opposite sign over these regions.  相似文献   

6.
Influence of North Atlantic sea surface temperature (SST) anomalies on tropical Pacific SST anomalies is examined. Both summer and winter North Atlantic SST anomalies are negatively related to central-eastern tropical Pacific SST anomalies in the subsequent months varying from 5 to 13?months. In particular, when the North Atlantic is colder than normal in the summer, an El Ni?o event is likely to be initiated in the subsequent spring in the tropical Pacific. Associated with summer cold North Atlantic SST anomalies is an anomalous cyclonic circulation at low-level over the North Atlantic from subsequent October to April. Corresponded to this local response, an SST-induced heating over the North Atlantic produces a teleconnected pattern, similar to the East Atlantic/West Russia teleconnection. The pattern features two anticyclonic circulations near England and Lake Baikal, and two cyclonic circulations over the North Atlantic and near the Caspian Sea. The anticyclonic circulation near Lake Baikal enhances the continent northerlies, and strengthens the East-Asian winter monsoon. These are also associated with an off-equatorial cyclonic circulation in the western Pacific during the subsequent winter and spring, which produces equatorial westerly wind anomalies in the western Pacific. The equatorial westerly wind anomalies in the winter and spring can help initiate a Pacific El Ni?o event following a cold North Atlantic in the summer.  相似文献   

7.
Atmospheric circulation patterns in southern Chile (42° 30′ S) were studied in order to determine and analyse the most characteristic synoptic types and their recent trends, as well as to gain an understanding of how they are associated with low-frequency variability patterns. According to the Jenkinson and Collison (J&C) classification method, a 16-point grid of sea-level pressure data was employed. The findings reveal that some synoptic types show statistically significant trends with a 95% confidence level, positively for anticyclonic westerly hybrids (AW) and advective types for third and fourth quadrant wind flows (W, NW, and N) and negatively for SW and cyclonic hybrids (CS and CSW). A model has been constructed of the linear regression of some weather types with teleconnections that most affect Chile: the undetermined types (U), AW were associated with El Niño or the warm phase of the Pacific Decadal Oscillation (PDO), whereas the cyclonic northerly and cyclonic northeasterly types (CN and CNE) were associated with La Niña or cool phase of the PDO. The weather types associated with Antarctic Oscillation (AAO) in its positive phase are anticyclonic northerly and northeasterly and northerly advection types, while in its negative phase are cyclonic southwesterly and advection types.  相似文献   

8.
Dynamical changes in the Arctic and Antarctic lower stratosphere from autumn to spring were analysed using the NCEP/NCAR, ERA40 and FUB stratospheric analyses for three periods: 1979–1999, 1979–2005, and 1965–2005. We found a weakening of the Arctic vortex in winter and a strengthening in spring between 1979/1980 and 1998/1999, with corresponding changes in the zonal mean circulation. The vortex formed earlier in autumn and broke down later in spring. These changes however were statistically not significant due to the high interannual dynamical variability in northern hemisphere (NH) winter and spring and the relatively short time series. In the Antarctic, the vortex formed earlier in autumn, intensified in late spring, and broke down later. The changes of the Antarctic vortex were at all levels and for both autumn and spring transitions larger and more significant than the changes of the Arctic vortex. These changes of the 1980s and early to mid 1990s were however not representative of a long-term change. The dynamically more active winters in the Arctic and Antarctic since 1998/1999 led to an enhanced weakening of the polar vortex in winter, and to a reduction of the polar vortex intensification in spring. As two of the recent Arctic major warmings occurred rather early in winter the polar vortex could recover in late winter and the delay in spring breakdown further increased. In contrast, the increase in Antarctic vortex persistence did no longer appear when including the recent winters due to the dominant impact of the three recent dynamically active Antarctic winters in 2000, 2002, and 2004. The long-term changes of 1965/1966–2005 were smaller in amplitude and partly opposite to the trends since the 1980s. There is no significant long-term change in the Arctic vortex lifetime or spring persistence, while the Antarctic vortex shows a long-term deepening and shift towards later spring transitions. The changes in the stratospheric dynamical situation could be attributed in both hemispheres to changes in the dynamical forcing from the troposphere.  相似文献   

9.
Summary ?In this study a methodology for grouping seasonal circulation types occurring over an area is introduced. This procedure combines the surface air mass characteristics affecting the area with the synoptic conditions prevailing over it. Factor Analysis and Cluster Analysis are used to derive the circulation types, based on surface meteorological data and surface pressure grid data. The methods are applied to Athens, Greece, using data over the period 1954–1999 for winter (December, January, February) and summer (June, July, August) seasons. The daily circulation types are analyzed at surface level and their temporal evolution is examined via transition matrices. 315 grid points are used covering the area between 25° N to 60° N and 10° W to 40° E. This analysis derives 8 circulation types for the winter and 4 for the summer. A reduction in cyclonic activity and an increase in anticyclonic activity in the Central Mediterranean are detected in the late 1980s and early 1990s during the winter period. During summer the etesian winds and the local flows are dominant over Athens. Received February 20, 2002; accepted January 9, 2003 Published online May 26, 2003  相似文献   

10.
Summary The long term changes of the Prague urban heat island are analyzed separately for different groups of synoptic (circulation) types during the 1961–1990 period. The synoptic types are taken from Brádka’s synoptic catalogue, which is in common use in the Czech Republic; and the grouping of types is based on their cyclonicity and directional characteristics. The increase in the heat island intensity is steeper under anticyclonic than cyclonic conditions in all seasons except for spring. The increase in the intensity differs between dominant airflow directions. With only a single exception, the heat island intensification is much larger under the synoptic types with the north to northeast and south to southwest flow than under the other flow directions.  相似文献   

11.
影响南海夏季风爆发年际变化的关键海区及机制初探   总被引:1,自引:7,他引:1  
利用1958—2011年NCEP/ NCAR再分析资料和ERSST资料,采用Lanczos时间滤波器、相关分析、回归分析、合成分析和交叉检验等方法,研究了影响南海夏季风爆发年际变化的关键海区海温异常的来源与可能机制。结果表明,前冬(12—2月)热带西南印度洋和热带西北太平洋是影响南海夏季风爆发年际变化的关键海区。冬季热带西南印度洋(热带西北太平洋)的异常增暖是由前一年夏季El Ni?o早爆发(强印度季风异常驱动的行星尺度东-西向环流)触发、热带印度洋(西北太平洋)局地海气正反馈过程引起并维持到春季。冬季热带西北太平洋反气旋性环流(气旋性环流)及印度洋(热带西北太平洋)的暖海区局地海气相互作用使得印度洋(热带西北太平洋)海温异常维持到春末。春季,逐渐加强北移到10 °N附近的低层大气对北印度洋(热带西北太平洋)暖海温异常响应的东风急流(异常西风)及南海-热带西北太平洋维持的反气旋性环流(气旋性环流)异常,使得南海夏季风晚(早)爆发。   相似文献   

12.
The variations of both total and extreme precipitations over Asia are characterized by large regional features and seasonality. Extreme precipitation mainly occurs in summer and then in autumn over South Asia but it is a prominent phenomenon in all seasons over Southeast Asia. It explains above 40% of the total precipitation in winter over India, while the ratio of extreme precipitation to total precipitation is 30% or smaller in all seasons over southern-central China. Over Southeast Asia, the largest ratio appears in winter. The extreme precipitation over Southeast Asia (EPSEA) exhibits significant positive trends in all seasons except autumn. The long-term increase in summer EPSEA is associated with significant surface warming over extratropical Asia and the Indo-Pacific oceans and linked to a large-scale anomalous cyclonic pattern over Southeast Asia. An increase in de-trended summer EPSEA is associated with less significant surface warming. However, it is still clearly linked to an anomalous cyclonic pattern over Southeast Asia, contributed by intensifications of monsoon flow from the west, trade wind from the east, and cross-equatorial flow over Indonesia. The antecedent features of increased summer EPSEA include an overall warming over the tropical–subtropical northern hemisphere and an anomalous cyclonic pattern over Southeast Asia in winter and spring. When the large-scale Asian monsoon (measured by the Webster-Yang monsoon index) or the South Asian monsoon is strong, summer extreme precipitation mainly increases over tropical Asia. When monsoon is strong over Southeast Asia or East Asia, extreme precipitation increases over Southeast Asia and decreases over East Asia. A strong summer monsoon over Southeast Asia or East Asia is also followed by decreased autumn extreme precipitation over Southeast Asia.  相似文献   

13.
The study examines how regional climate models (RCMs) reproduce the diurnal temperature range (DTR) in their control simulations over Central Europe. We evaluate 30-year runs driven by perfect boundary conditions (the ERA40 reanalysis, 1961–1990) and a global climate model (ECHAM5) of an ensemble of RCMs with 25-km resolution from the ENSEMBLES project. The RCMs’ performance is compared against the dataset gridded from a high-density stations network. We find that all RCMs underestimate DTR in all seasons, notwithstanding whether driven by ERA40 or ECHAM5. Underestimation is largest in summer and smallest in winter in most RCMs. The relationship of the models’ errors to indices of atmospheric circulation and cloud cover is discussed to reveal possible causes of the biases. In all seasons and all simulations driven by ERA40 and ECHAM5, underestimation of DTR is larger under anticyclonic circulation and becomes smaller or negligible for cyclonic circulation. In summer and transition seasons, underestimation tends to be largest for the southeast to south flow associated with warm advection, while in winter it does not depend on flow direction. We show that the biases in DTR, which seem common to all examined RCMs, are also related to cloud cover simulation. However, there is no general tendency to overestimate total cloud amount under anticyclonic conditions in the RCMs, which suggests the large negative bias in DTR for anticyclonic circulation cannot be explained by a bias in cloudiness. Errors in simulating heat and moisture fluxes between land surface and atmosphere probably contribute to the biases in DTR as well.  相似文献   

14.
The objective Lamb circulation type (CT) classification method, based on the strength, direction and vorticity of the geostrophic flow, is applied to Belgium. Eleven different large-scale synoptic circulation patterns are derived on a daily scale for the period 1962 and 1999. The circulation patterns are subsequently related to precipitation amount and occurrence for six stations characterising different regions in Belgium, namely coastal, flat and hilly areas. Based on precipitation occurrence and intensity, five wet classes are defined, which are responsible for 83% of the total precipitation amount. It is shown that a regression model based on CT as predictors represents precipitation variability better in winter and autumn than in spring and summer. On the monthly scale and in winter, CTs explain 60.3% of the precipitation variability.  相似文献   

15.
Summary  This paper presents a classification of weather types in the Mediterranean Basin based on cluster analysis of the daily occurrences of several surface pressure centers and the subjective identification of 500 hPa trough axis positions (1992–1996). The procedure results in 20 types that explain 69% of overall pressure center variance and which are consistent with the seasonal succession of regional circulation. The development of weather types in winter is primarily controlled by the eastward propagation of barotropic waves while departures from the zonal flow pattern in summer tend to be linked to blocked stationary pools. H1-types with anticyclonic circulation in the Western Mediterranean and cyclonic flow in the eastern part are well interrelated with zonal and anticyclonic general weather types in Central Europe. H2-types featuring a weak Azores Anticyclone interrelate with a variety of meridional circulation types after the Hess and Brezowski (1969) classification. The 20 types explain rainfall variance in the core Mediterranean regions (as defined by principal components) to a high degree while rainfall variance in marginal regions is influenced by circulation patterns not being typical for the Mediterranean Basin. Received January 29, 1999 Revised March 28, 2000  相似文献   

16.
Extreme drought event of 2009/2010 over southwestern China   总被引:2,自引:0,他引:2  
The extreme drought of 2009/2010 over southwestern China is the driest event with the lowest percentage rainfall anomaly and the longest non-rain days during winter season (October–February) in the past 50?years, and also the severest one with the lowest percentage rainfall anomaly at the same period since 1880. The drought domain is characterized with anomalous warming and drying in the mid-lower troposphere as well as an evident anomalous subsidence. The favorable circulation anomalies for this drought are associated with the following two factors. One is the strongest negative-phase Arctic Oscillation during 2009/2010 winter that accompanies with a weakened Middle East Jet Stream (MEJS), the cyclonic anomaly over Arabian Sea (AS), the anticyclonic anomaly over Tibet and the cyclonic anomaly over Lake Baikal. The weakened MEJS, the AS cyclonic anomaly and the Tibet anticyclonic anomaly weaken the Southern Branch Trough (SBT) that directly decreases the moisture transport toward the southwestern China; the cyclonic anomaly over the Lake Baikal causes a deepened and westward shifted East Asian Major Trough (EAT) so that dry cold air behind the EAT easily invades down to southwestern China. The AS cyclonic anomaly favors the westward extension of Western Pacific Subtropical High (WPSH). The westward extension of WPSH is also associated with the second factor that is the El Nino Modoki event during 2009/2010 autumn–winter. The intensification and westward extension of WPSH enhance the local subsidence, weaken the SBT and exacerbate this drought.  相似文献   

17.
The seasonality of the interaction between convection over the western Pacific and general circulation in the Northern Hemisphere (NH) is analyzed in the present paper with singular value decomposition (SVD) and empirical orthogonal function (EOF) analysis approaches, based on 500 hPa monthly mean geopotential height data and high-cloud amount data. The analyses demonstrate that coupled dominant patterns in the interaction between the convection over the western Pacific and the general circulation in NH are different in various seasons. In spring, the convection over the western Pacific is closely related with the western Atlantic (WA) and North Pacific (NP) like patterns of the general circulation in NH, and some associations between the WA and NP like pat?terns and the El Ni?o / Southern Oscillation (ENSO) cycle are also existed. The Pacific Japan (PJ) pattern is the dom?inant pattern in the interaction between the interannual variabilities of the convection over the western Pacific and the general circulation in NH summer. The WA like pattern and 3-4 year period oscillation are also relatively obvious for the summer case. In autumn, the convection over the western Pacific is closely linked with the Eurasian (EU) like pattern and the Atlantic oscillation in the general circulation in NH, it is suggested that in autumn the vitiation of convective activity over the western Pacific is largely affected by the general circulation anomaly (cold air from high latitudes) through EU like teleconnection pattern. Abrupt change happened by the end of 1980’s in the autumn interaction. The strong interaction between the western Pacific (WP) and EU like patterns in the general circulation in NH and the convection over the western Pacific and a linear trend of increasing of this interaction are also suggested in winter. It is also demonstrated that the interaction in summer and winter is stronger than in the transition seasons (spring and autumn).  相似文献   

18.
Using observations and reanalysis data, this study investigates the interannual relationship between the winter Aleutian Low(AL) and the rainfall anomalies in the following summer in South China(SC). Results show that the winter AL is significantly positively(negatively) correlated with the SC rainfall anomalies in the following July(August). Specifically, SC rainfall anomalies have a tendency to be positive(negative) in July(August) when the preceding winter AL is stronger than normal. The winter AL-related atmospheric circulation anomalies in the following summer are also examined. When the winter AL is stronger, there is a significant anticyclonic(cyclonic) circulation anomaly over the subtropical western North Pacific in the following July(August). Southerly(northerly) wind anomalies to the west of this anomalous anticyclonic(cyclonic) circulation increase(decrease) the northward moisture transportation and contribute to the positive(negative) rainfall anomalies over SC in July(August). This study indicates that the AL in the preceding winter can be used as a potential predictor of the rainfall anomalies in the following July and August over SC.  相似文献   

19.
The study has analyzed influence of an atmospheric circulation on urban heat island (UHI) and urban cold island (UCI) in Poznań. Analysis was conducted on the basis of temperature data from two measurement points situated in the city center and in the ?awica airport (reference station) and the data concerning the air circulation (Nied?wied?’s calendar of circulation types and reanalysis of National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR)). The cases with UHI constitute about 85 % of all data, and UCI phenomena appear with a frequency of 14 % a year. The intensity of UHI phenomenon is higher in the anticyclonic circulation types. During the year in anticyclonic circulation, intensity of UHI is 1.2 °C on average while in cyclonic is only 0.8 °C. The occurring of UHI phenomena is possible throughout all seasons of the year in all hours of the day usually in anticyclonic circulation types. The cases with highest UHI intensity are related mostly to nighttime. The cases of UCI phenomena occurred almost ever on the daytime and the most frequently in colder part of the year together with cyclonic circulation. Study based on reanalysis data indicates that days with large intensity of UHI (above 4, 5, and 6 °C) are related to anticyclonic circulation. Anticyclonic circulation is also promoting the formation of the strongest UCI. Results based on both reanalysis and the atmospheric circulation data (Nied?wied?’s circulation type) confirm that cases with the strongest UHI and UCI during the same day occur in strong high-pressure system with the center situated above Poland or central Europe.  相似文献   

20.
A diagnostic study of the impact of El Niño on the precipitation in China   总被引:20,自引:0,他引:20  
The impact of El Niño on the precipitation in China for different seasons are investigated diagnostically. It is found that El Niño can influence the precipitation in China significantly during its mature phase. In the Northern winter, spring and autumn, the positive precipitation anomalies are found in the southern part of China during the El Niño mature phase. In the Northern summer, the patterns of the precipitation anomalies in the El Niño mature phase are different from those in the other seasons. The negative precipitation anomalies appear in both southern and northern parts of China, while in between around the lower reaches of the Yangtze River and the Huaihe River valleys the precipitation anomalies tend to be positive. In the Northern winter, spring and autumn, the physical process by which El Niño affects the precipitation in the southern part of China can be explained by the features of the circulation anomalies over East Asia during the El Niño mature phase (Zhang et al., 1996). The appearance of an anticyclonic anomaly to the north of the maritime continent in the lower troposphere during the El Niño mature phase intensifies the subtropical high in the western Pacific and makes it shift westward. The associated southwesterly flow is responsible for the positive precipitation anomalies in the southern part of China. In the Northern summer, the intensified western Pacific subtropical high covers the southeastern periphery of China so that the precipitation there becomes less. In addition, the weakening of the Indian monsoon provides less moisture inflow to the northern part of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号