首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
东亚夏季风系统与青藏高原冬季植被的关系   总被引:4,自引:3,他引:1       下载免费PDF全文
用1982年1月—2001年12月NDVI资料、台站日降水资料和NCEPⅠ/NCAR再分析资料,首先利用SVD方法分析了青藏高原冬季NDVI与我国降水的关系,指出青藏高原冬季NDVI与我国夏季降水相关系数从南到北呈"+-+-"相间分布,高原冬季NDVI增大(减小),随后夏季降水在华南和华北地区增加(减少),而长江流域和东北地区降水减少(增加)。然后通过合成法,分析了高原冬季NDVI大、小值年东亚夏季风系统的变化,得到在青藏高原冬季NDVI大值年时,夏季马斯克林高压偏弱,而澳大利亚高压偏强。赤道辐合带强度偏强,有利于越赤道气流的加强,使南海夏季风爆发偏早。同时南亚高压偏弱位置偏西,副热带高压位置偏东偏北。副热带西风急流的位置也偏西偏北。  相似文献   

2.
青藏高原加热对东亚地区夏季降水的影响   总被引:11,自引:4,他引:11  
刘新  李伟平  许晃雄  吴国雄 《高原气象》2007,26(6):1287-1292
东亚地区降水主要集中在夏季,是亚洲夏季风系统的重要特征.本文利用NCEP再分析资料和CRU的降水资料,分析了青藏高原非绝热加热对东亚夏季降水的影响.结果表明,东亚地区夏季降水的分布形势与青藏高原非绝热加热变化有很好的相关关系.由于高原非绝热加热可在亚洲东部沿海地区强迫出类似Rossby波列的大气环流低频振荡结构,而此低频波可以影响到西太平洋副热带高压的形态和位置变化,从而使得东亚夏季降水的形势发生变化.而青藏高原非绝热加热的形态从春季到夏季有很好的持续性,春季高原加热与夏季东亚的降水形势分布也有很好的相关.本研究中采用的青藏高原非绝热加热指数可作为东亚夏季降水预测的一个指标,亚洲季风降水不仅受赤道太平洋海温的影响,青藏高原地区的非绝热加热对其也有显著的影响作用.  相似文献   

3.
通过对1958-2012年JRA-55青藏高原积雪雪深资料的分析,得到青藏高原积雪雪深的年代际分布状况,得到青藏高原积雪的年代际变化特征。采用国家气候中心整理的1951-2013年中国160站月降水资料,分析青藏高原前冬期积雪变化对中国夏季降水的影响,在青藏高原前冬期积雪偏多的情况下,我国长江中游地区,东北地区都为正相关;而东北北部、河套地区南部、淮河和华南地区是负相关。我国东部地区经向呈"负-正-负-正"降水异常分布型;青藏高原前冬期积雪减少,对应长江中下游和华北北部地区夏季降水减少和华南、淮河地区夏季降水增多,我国东部地区经向呈"正-负-正-负"降水异常分布型。  相似文献   

4.
基于欧洲中期天气预报中心(ECMWF)的Interim再分析资料(ERA-Interim)和新疆88个观测站点降水资料,分析了1979—2013年夏季(7月和8月)南亚高压多模态特征及其与新疆夏季降水的关系。结果表明,南亚高压除了青藏高压型和伊朗高压型外,还存在双体型。伊朗高压型和双体型分布产生的降水占新疆夏季总降水的70%~90%,青藏高压型分布产生的降水相对较少,占10%~30%。南亚高压的多模态分布对新疆降水有不同影响,伊朗高压型时,北疆部分地区和东疆降水偏多,塔里木盆地降水偏少;青藏高压型时,除塔里木盆地西南部降水偏多外,新疆其余地方降水均偏少。南亚高压双体型对塔里木盆地夏季降水影响最为突出,当夏季南亚高压呈双体型分布时,塔里木盆地降水偏多。合成分析发现,南亚高压双体型中心位置变化对环流和水汽输送产生不同影响,因而对应的塔里木盆地夏季降水也存在一定差异。当两个中心位置同时偏西时,塔里木盆地中西部地区降水偏多,水汽分两步进入塔里木盆地。当两个中心位置同时偏北时,整个塔里木盆地降水增加,水汽沿着青藏高原东侧绕流进入塔里木盆地。  相似文献   

5.
根据西南地区夏季及夏季各月1951~1999年逐年的降水资料和同期北半球100hPa位势高度场资料,分析了我国西南地区夏季降水的年际变化特征及旱涝分布状况.结果表明:西南地区夏季降水存在3~4年的年际周期和10~16年的年代际周期.西南夏季降水量及西南夏季的旱涝分布与南亚高压存在较好的相关关系.由此认为,南亚高压是影响西南夏季降水的一个较为的重要因子.  相似文献   

6.
利用O3监测仪(Ozone Monitoring Instrument,OMI)卫星O3廓线资料和NCEP/NCAR再分析资料,研究了2006年夏季南亚高压偏西型和偏东型条件下青藏高原地区O3垂直结构和变化特征差异.结果表明,夏季南亚高压东西振荡与青藏高原O3分布存在密切的关系,在西(东)部型南亚高压条件下,夏季青藏高...  相似文献   

7.
利用1979—2008年NCEP/NCAR逐日再分析资料、全国753个测站的逐日降水资料和向外长波辐射(OLR)资料讨论了4—5月南亚高压在中南半岛上空建立的早晚与后期亚洲热带夏季风的建立及中国中东部夏季降水的关系。发现南亚高压建立偏早(晚)年,亚洲热带地区纬向风垂直切变转向和对流爆发早(晚),对流层低层赤道印度洋地区为反气旋式(气旋式)距平环流。相应地,亚洲热带夏季风建立早(晚)。此外,南亚高压建立早晚年,夏季6—8月期间亚洲区域的大气环流形势及水汽输送状况也存在显著差异:偏早(晚)年,南亚高压和西太副高偏弱(强),中高纬环流形势有(不)利于冷空气南下,长江以南地区上升运动偏强(弱),长江以北地区则上升运动偏弱(强),我国中东部至西太平洋地区为气旋式(反气旋式)水汽通量距平环流控制,导致中国中东部夏季降水在南亚高压建立早晚年大致呈现反相分布。因此南亚高压在中南半岛上空建立的早晚可以作为高层先兆信号,对后期亚洲热带夏季风的建立及中国中东部夏季降水分布起到较好的指示作用。   相似文献   

8.
利用1996-2010年逐时红外云顶亮温(TBB)数据,对青藏高原(下称高原)和东亚地区暖季(3-9月)中尺度对流系统(MCSs)进行了普查,获得MCSs各项特征数据集;结合CMORPH降水资料对MCSs降水特征进行了分析,在此基础上又对高原和东亚地区的MCSs特征进行了对比分析.结果表明:(1)高原是东亚地区MCSs高频发生区域,高原MCSs的平均发生频次远高于东亚25°N以北地区,是东亚25°N以北地区唯一的MCSs活动高频区.高原腹地是高原地区MCSs发生的高频区,在31°N,88°E附近MCSs的发生频次最高.(2)高原地区 MCSs分布有明显的月际变化,春季主要出现在高原北部,夏季主要出现在高原中东部和南部.高原地区MCSs的月际变化特征与东亚地区基本一致,东亚夏季风是其月际变化的重要影响因子.(3)高原地区MCSs存在明显的单峰型日变化特征,但春、夏季日变化特征略有不同,高原MCSs的日变化较东亚地区更为显著.(4)高原地区MCSs的降水频次为5.6%,降水贡献率为10.1%,最大降水频次为12%,最大降水贡献率为27%;与东亚地区相比,高原的MCSs降水偏小.(5)高原地区的MCSs大多为向东移动且移速缓慢以及短生命史的MβCS,平均生命史为4.6h,平均面积约为11.2×10-1km2,平均移速为31.5 km·h-1,东移的MCSs占59.4%;与整个东亚地区的MCSs相比,高原的MCSs面积和尺度都较小,生命史略短且移速慢,云顶平均TBB和平均最低TBB均偏高.  相似文献   

9.
2006年川渝地区夏季干旱的成因分析   总被引:2,自引:1,他引:1  
利用NCEP/NCAR再分析月平均资料、全国160站降水资料、向外长波辐射OLR(outgoinglongwave radiation)资料和所计算的热源资料,分析了2006年夏季东亚大气环流的异常特征,并研究了热力异常与川渝地区夏季降水的关系。结果表明,2006年夏季由南向北的水汽输送较常年偏弱;西太洋副热带高压较常年异常偏强,脊线位置明显偏北,川渝地区受高压系统影响盛行下沉气流,中高纬环流场则表现为乌拉尔山地区和东北亚区域无明显阻塞高压形势,冷空气活动比常年弱;南亚高压比常年偏北偏强,持续控制川渝地区;2006年夏季青藏高原热源偏弱,热带西太平洋暖池区热源偏强,是引起西太平洋副热带高压偏北偏强的重要原因之一。川渝地区夏季降水与西太平洋副热带高压的异常变化有密切关系,川渝地区夏季干旱年,西太平洋副热带高压偏北,并且引起西太平洋副热带高压偏北的原因与2006年类似。  相似文献   

10.
中国西南地区夏季降水的年际变化及与南亚高压的关系   总被引:1,自引:0,他引:1  
杜银  谢志清 《四川气象》2002,22(4):8-13
根据西南地区夏季及夏季各月1951-1999年逐年的降水资料和同期北半球100hPa位势高度场资料,分析了我国西南地区夏季降水的年际变化特征及旱涝分布状况。结果表明:西南地区夏季降水存在3-4年的年际周期和10-16年的年代际周期。西南夏季降水量及西南夏季的旱涝分布与南亚高压存在较好的相关关系。由此认为,南亚高压是影响西南夏季降水的一个较为的重要因子。  相似文献   

11.
青藏高原上空环流变化与其东侧 旱涝异常分析   总被引:16,自引:4,他引:12  
李跃清 《大气科学》2000,24(4):470-476
应用奇异值分解(SVD)技术研究了青藏高原上空100 hPa高度场与高原东侧地区夏季降水场的时空结构及相互关系。结果表明: 第一模态代表了两场间的主要耦合特征,具有高度的时空相关;前期10~12月、1~4月青藏高原上空100 hPa高度场与高原东侧地区6~8月降水场具有显著的联系,前期高度场变化引起后期南亚高压状况异常,导致高原东侧地区旱涝灾害;高原东侧地区严重干旱(洪涝)年,其上空100 hPa高度场为负(正)距平控制; 高度场与降水场的这种非同步联系,时空相关显著,时间间隔长,物理意义明确,是高原东侧地区夏季旱涝异常的一种预测信号。  相似文献   

12.
杨莲梅  张庆云 《高原气象》2007,26(3):435-441
利用1980—2004年NCEP/DOE新再分析月平均资料及我国225个测站1980—2004年月降水量资料,通过诊断分析,研究了南疆夏季降水异常的环流和高原地表潜热通量特征。结果表明:南疆夏季降水偏少年,南亚高压西部偏强,西风急流位置偏北,500 hPa中高纬环流经向度减弱,伊朗高压偏北、偏东,西太平洋副热带高压偏西、偏南;降水偏多年则相反。南疆夏季降水偏少年,高原北部和南疆地区为下沉的垂直环流距平,Ferrell环流增强;降水偏多年则相反。南疆夏季降水偏少年和偏多年的前期冬春季开始孟加拉湾、青藏高原和南疆地区地表潜热通量具有相反的变化,南疆夏季降水与高原北部地表潜热通量呈显著正相关,与南部地表潜热通量呈反相关关系。  相似文献   

13.
青藏高原热力异常与华北汛期降水关系的研究   总被引:24,自引:3,他引:24  
利用1980~1994年NCEP/NCAR再分析资料,以及我国336个测站1956~1994年月降水量资料,通过诊断分析和数值实验,研究了夏季高原上热力异常与华北汛期降水的关系.结果表明:华北汛期干旱年,青藏高压及西太平洋副热带高压偏南、偏东,华北汛期降水偏多年则相反;华北汛期旱年时,高原上升、高原东侧邻近地区下沉的垂直环流明显加强,而降水偏多年时,垂直环流减弱,华北地区为上升气流控制;夏季高原为热源和水汽汇区,它们的异常对华北地区降水有很大影响,当热源和水汽汇增强(减弱)时,华北地区降水偏少(偏多).数值试验表明,高原上潜热加热异常引起青藏高压、西太平洋副热带高压、亚洲季风以及欧亚中高纬地区环流的变化,进而影响到华北地区的降水.  相似文献   

14.
我国夏季降水与青藏高原春季NDVI的关系   总被引:6,自引:1,他引:5       下载免费PDF全文
利用1982年1月-2001年12月NDVI资料、台站降水资料和NCEP/NCAR再分析资料, 通过相关分析和合成分析方法, 初步分析了我国夏季降水与青藏高原春季植被的关系及可能机理。结果发现:青藏高原春季NDVI与我国夏季降水相关系数从南到北呈西北-东南向“ + - +”带状分布。合成分析也表明:青藏高原春季NDVI大、小值年降水年内分布也存在明显差异。降水的上述差异, 可能是由于青藏高原春季NDVI变化导致热源效应改变, 引起大气环流变化造成的。对环流分析也发现:大气环流的变化特征与降水变化表现出很好的一致性。  相似文献   

15.
夏季青藏高原大气热源与西南地区东部旱涝的关系   总被引:9,自引:5,他引:9       下载免费PDF全文
利用1959~2006年西南地区东部20个测站逐日降水量资料和NCEP/NCAR再分析月平均资料,分析了夏季青藏高原大气热源特征,指出了影响西南地区东部夏季旱涝的热源关键区域,并就关键区大气热源对该区域夏季旱涝的影响进行了诊断,得出了以下主要结论:西南地区东部夏季降水与高原主体东南部的热源变化关系密切,当该区域(该区域...  相似文献   

16.
青藏高原影响亚洲夏季气候研究的最新进展   总被引:40,自引:6,他引:40  
文中回顾了近 10a来吴国雄等在青藏高原影响亚洲夏季气候研究方面的最新进展。通过分析东西风交界面的演变证明 ,由于青藏高原的春季加热 ,亚洲季风区对流层低层冬季盛行偏东风转变为夏季偏西南风最早发生在孟加拉湾东部 ,与其相伴随的激烈对流降水出现在其东面。因此孟加拉湾东部至中印半岛西部是亚洲季风最早爆发的地区。同时也指出盛夏伊朗高原和青藏高原加热所激发的同相环流嵌套在欧亚大陆尺度的热力环流中 ,从而加强了东亚的夏季风 ,加剧了中西亚的干旱 ;并通过其所激发的波动对夏季东亚的气候格局产生重要影响。文中还比较了夏季南亚高压的伊朗模态和青藏模态性质的异同及其对亚洲夏季降水异常分布的不同影响。  相似文献   

17.
春季青藏高原感热对中国东部夏季降水的影响和预测作用   总被引:1,自引:0,他引:1  
利用1980-2012年青藏高原中、东部71个站点观测资料、全中国756站的月降水资料、哈得来中心提供的HadISST v1.1海温资料以及ERA-Interim再分析资料,综合青藏高原的感热加热以及全球海温,研究了春季青藏高原感热对中国东部夏季降水的影响,并建立预报方程,探讨了青藏高原春季感热对中国降水的预报作用。结果表明,青藏高原春季感热与中国东部降水关系密切,青藏高原春季感热异常增强伴随着长江流域中下游同期降水增多,后期夏季长江流域整流域降水也持续偏多,华南东部降水偏少。春季青藏高原感热的增强与环北半球中高纬度的罗斯贝波列密切相关,扰动在北太平洋形成的反气旋环流向西南方向延伸至西北太平洋,为长江流域输送大量的水汽,有利于降水的发生。夏季,伴随着前期青藏高原感热的增强,南亚高压位置偏东,西北太平洋副热带高压(西太副高)位置偏西偏南,西太副高北侧为气旋式环流异常。在西太副高的控制下,华南东部降水减少;西太副高西侧的偏南气流为长江流域带来大量水汽,并与来自北部气旋式环流异常西侧的偏北风发生辐合,降水增多。青藏高原春季感热异常是华南和长江流域夏季降水异常的重要前兆信号。加入青藏高原春季感热后,利用海温预报的华南、长江流域夏季降水量与观测值的相关系数有所提高,预报方程对区域降水的解释方差提高约15%。   相似文献   

18.
中亚和南亚热力差异对塔里木盆地夏季降水的影响   总被引:1,自引:0,他引:1  
利用美国国家环境预测中心/美国国家大气研究中心(NCEP/NCAR)再分析月平均资料和新疆83站降水资料,分析了1961~2010年南亚和中亚对流层中低层热力差异对塔里木盆地夏季降水的可能影响机制。研究结果表明,塔里木盆地夏季降水与中亚和南亚对流层中低层温度密切相关。当南亚对流层中低层偏暖,中亚偏冷时,500 h Pa中亚上空和蒙古上空分别为异常气旋和反气旋环流,在二者共同作用下,塔里木盆地上空盛行异常的偏南气流,有利于低纬海洋的暖湿气流北上,形成有利于降水的环流条件。同时阿拉伯海上空为异常反气旋环流,中亚上空为异常气旋环流,形成塔里木盆地夏季降水水汽的两步型输送,阿拉伯海水汽被输送至中亚和新疆地区。中亚对流层中低层温度变化主要影响500 h Pa环流,南亚对流层中低层温度变化在低纬水汽向北输送过程中扮演主要角色。青藏高原夏季风偏强时,600 h Pa高原北侧对应异常反气旋环流,异常偏北风引导高纬度冷空气南下,导致中亚区域对流层中低层偏冷,而南亚对流层中低层偏暖则与热带印度洋显著增暖密切相关。  相似文献   

19.
青藏高原积雪与亚洲季风环流年代际变化的关系   总被引:12,自引:1,他引:12  
利用高原测站的月平均雪深资料和NCEP/NCAR再分析资料,分析了20世纪70年代末以来,青藏高原积雪的显著增多与亚洲季风环流转变的联系。研究表明,高原南侧冬春季西风的增强及西风扰动的活跃是造成青藏高原冬春积雪显著增多的主要原因,高原积雪的增多与亚洲夏季风的减弱均是亚洲季风环流转变的结果;20世纪70年代末以来,夏季华东降水的增多、华南降水的减少及华北的干旱化与青藏高原冬春积雪增多及东亚夏季风的减弱是基本同步的,高原冬春积雪与华东夏季降水的正相关、与华北及华南夏季降水的负相关主要是建立在年代际时间尺度上,因此,高原积雪与我国夏季降水关系的研究应以亚洲季风环流的年代际变化为背景。  相似文献   

20.
This study investigates the statistical linkage between summer rainfall in China and the preceding spring Eurasian snow water equivalent (SWE), using the datasets of summer rainfall observations from 513 stations, satellite-observed snow water equivalent, and atmospheric circulation variables in the NCEP/NCAR re-analysis during the period from 1979 to 2004. The first two coupled modes are identified by using the singular value decomposition (SVD) method. The leading SVD mode of the spring SWE variability shows a coherent negative anomaly in most of Eurasia with the opposite anomaly in some small areas of the Tibetan Plateau and East Asia. The mode displays strong interannual variability, superposed on an interdecadal variation that occurred in the late 1980s, with persistent negative phases in 1979--1987 and frequent positive phases afterwards. When the leading mode is in its positive phase, it corresponds to less SWE in spring throughout most of Eurasia. Meanwhile, excessive SWE in some small areas of the Tibetan Plateau and East Asia, summer rainfall in South and Southeast China tends to be increased, whereas it would be decreased in the up-reaches of the Yellow River. In recent two decades, the decreased spring SWE in Eurasia may be one of reasons for severe droughts in North and Northeast China and much more significant rainfall events in South and Southeast China. The second SVD mode of the spring SWE variability shows opposite spatial variations in western and eastern Eurasia, while most of the Tibetan Plateau and East Asia are in phase. This mode significantly correlates with the succeeding summer rainfall in North and Northeast China, that is, less spring SWE in western Eurasia and excessive SWE in eastern Eurasia and the Tibetan Plateau tend to be associated with decreased summer rainfall in North and Northeast China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号