首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 210 毫秒
1.
冰冻圈变化及其对中国气候的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
The cryosphere is a prominent factor in and an indicator of global climate change. It serves one of the most direct and sensitive feedbacks in the climate system, and plays an important role in the earth's climate system. Cryospheric research has attracted unprecedented attention in the context of global warming, and is now one of the most active areas in studies of global change, sustainable development, and the climate system. This paper addresses recent and potential future changes in the cryosphere both globally and within China under the background of global warming. Particular attention is paid to progress toward understanding the impacts of the Tibetan Plateau and Eurasian snow cover, Arctic and Antarctic sea ice, and permafrost and glaciers on Chinese climate. The future development of cryospheric research in China is also discussed.  相似文献   

2.
Based on climate extreme indices calculated from a high-resolution daily observational dataset in China during1961–2005, the performance of 12 climate models from phase 6 of the Coupled Model Intercomparison Project(CMIP6),and 30 models from phase 5 of CMIP(CMIP5), are assessed in terms of spatial distribution and interannual variability. The CMIP6 multi-model ensemble mean(CMIP6-MME) can simulate well the spatial pattern of annual mean temperature,maximum daily maximum temperature, and minimum daily minimum temperature. However, CMIP6-MME has difficulties in reproducing cold nights and warm days, and has large cold biases over the Tibetan Plateau. Its performance in simulating extreme precipitation indices is generally lower than in simulating temperature indices. Compared to CMIP5, CMIP6 models show improvements in the simulation of climate indices over China. This is particularly true for precipitation indices for both the climatological pattern and the interannual variation, except for the consecutive dry days. The arealmean bias for total precipitation has been reduced from 127%(CMIP5-MME) to 79%(CMIP6-MME). The most striking feature is that the dry biases in southern China, very persistent and general in CMIP5-MME, are largely reduced in CMIP6-MME. Stronger ascent together with more abundant moisture can explain this reduction in dry biases. Wet biases for total precipitation, heavy precipitation, and precipitation intensity in the eastern Tibetan Plateau are still present in CMIP6-MME, but smaller, compared to CMIP5-MME.  相似文献   

3.
An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interan-nual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change pro jection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface tem-perature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Ni-no-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the perfor-mances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific mon-soon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways pro jection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

4.
There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.  相似文献   

5.
This paper gives a definition of earth system model and shows three development phases of it, including physical climate system model, earth climate system model, and earth system model, based on an inves- tigation of climate system models in the world. It provides an expatiation on the strategic significance of future development of earth system model, an introduction of some representative scientific research plans on development of earth system model home and abroad, and a review of its status and trends based on the models of the fourth assessment report (AR4) ofthe Intergovernmental Panel on Climate Change (IPCC). Some suggestions on future development of earth system model in China are given, which are expected to be helpful to advance the development.  相似文献   

6.
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).  相似文献   

7.
A review is presented about the development and application of climate ocean models and oceanatmosphere coupled models developed in China as well as a review of climate variability and climate change studies performed with these models. While the history of model development is briefly reviewed, emphasis has been put on the achievements made in the last five years. Advances in model development are described along with a summary on scientific issues addressed by using these models. The focus of the review is the climate ocean models and the associated coupled models, including both global and regional models, developed at the Institute of Atmospheric Physics, Chinese Academy of Sciences. The progress of either coupled model development made by other institutions or climate modeling using internationally developed models also is reviewed.  相似文献   

8.
Climate sensitivity and feedbacks are basic and important metrics to a climate system. They determine how large surface air temperature will increase under CO_2 forcing ultimately, which is essential for carbon reduction policies to achieve a specific warming target. In this study, these metrics are analyzed in a climate system model newly developed by the Chinese Academy of Meteorological Sciences(CAMS-CSM) and compared with multi-model results from the Coupled Model Comparison Project phase 5(CMIP5). Based on two idealized CO_2 forcing scenarios, i.e.,abruptly quadrupled CO_2 and CO_2 increasing 1% per year, the equilibrium climate sensitivity(ECS) and transient climate response(TCR) in CAMS-CSM are estimated to be about 2.27 and 1.88 K, respectively. The ECS is near the lower bound of CMIP5 models whereas the TCR is closer to the multi-model ensemble mean(MME) of CMIP5 due to compensation of a relatively low ocean heat uptake(OHU) efficiency. The low ECS is caused by an unusually negative climate feedback in CAMS-CSM, which is attributed to cloud shortwave feedback(λSWCL) over the tropical Indo-Pacific Ocean.The CMIP5 ensemble shows that more negative λSWCL is related to larger increase in low-level(925–700 hPa)cloud over the tropical Indo-Pacific under warming, which can explain about 90% of λSWCL in CAMS-CSM. Static stability of planetary boundary layer in the pre-industrial simulation is a critical factor controlling the low-cloud response and λSWCL across the CMIP5 models and CAMS-CSM. Evidently, weak stability in CAMS-CSM favors lowcloud formation under warming due to increased low-level convergence and relative humidity, with the help of enhanced evaporation from the warming tropical Pacific. Consequently, cloud liquid water increases, amplifying cloud albedo, and eventually contributing to the unusually negative λSWCL and low ECS in CAMS-CSM. Moreover, the OHU may influence climate feedbacks and then the ECS by modulating regional sea surface temperature responses.  相似文献   

9.
An overview of Chinese contribution to Coupled Model Intercomparison Project–Phase 5(CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 project are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interannual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change projection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface temperature(SST) mean state, seasonal cycle, spatial patterns of Madden–Julian oscillation(MJO) amplitude and tropical cyclone Genesis Potential Index(GPI), global monsoon precipitation pattern, El Nio–Southern Oscillation(ENSO), and Pacific Decadal Oscillation(PDO) related SST anomalies. However, the performances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific monsoon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the20th-century global warming and the future change under representative concentration pathways projection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

10.
Regional climate models are major tools for regional climate simulation and their output are mostly used for climate impact studies. Notes are reported from a series of numerical simulations of summer rainfall in China with a regional climate model. Domain sizes and running modes are major foci. The results reveal that the model in forecast mode driven by "perfect" boundaries could reasonably represent the inter-annual differences: heavy rainfall along the Yangtze River in 1998 and dry conditions in 1997. Model simulation in climate mode differs to a greater extent from observation than that in forecast mode. This may be due to the fact that in climate mode it departs further from the driving fields and relies more on internal model dynamical processes. A smaller domain in climate mode outperforms a larger one. Further development of model parameterizations including dynamic vegetation are encouraged in future studies.  相似文献   

11.
中国地球气候系统模式研究进展:CMIP计划实施近20年回顾   总被引:1,自引:0,他引:1  
在系统总结过去20年从CMIP1到CMIP4世界各国模式的综合情况基础上,回顾了中国气候模式参与CMIP科学试验的概况。在此基础上,慨述了CMIP5的试验设计,总结了参加CMIP5的5个中国气候模式的特点。随后,从高分辨率模式研发、地球系统模式研发、地球气候系统模式最为关键的分量——大气环流模式和海洋环流模式研发的角度,提出了中国地球气候系统模式发展面临的挑战,指出了中国模式发展面临的机遇。针对如何从国家层次协调以实现地球气候模式的可持续发展问题,给出了美国国家科学院最近发布的《推动气候模拟的国家战略》所提出的九条措施作为参考。  相似文献   

12.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

13.
对CMIP6全球气候模式在中国地区极端降水的模拟能力进行了综合评估。基于CN05.1观测数据集和32个CMIP6全球气候模式的降水数据,采用8个常用极端降水指数对极端降水进行了定量描述。研究结果表明,在极端降水的气候平均态方面,CMIP6多模式集合对1961—2005年中国地区区域平均的8个极端降水指数模拟的平均相对误差为29.94%,相较CMIP5降低了2.95个百分点。极端降水的气候变率方面,CMIP6多模式集合对区域平均的8个极端降水指数模拟的平均相对误差为10.10%,相较CMIP5降低5.45个百分点。此外,利用TS评分进行模式间比较,CMIP6的平均分(0.78)高于CMIP5(0.75),且模拟能力排名前五的模式中CMIP6占4个。对比14个同源模式的TS评分可以发现,CMIP6(0.91)相对于CMIP5(0.68)的模拟能力显著提高。进一步研究发现,CMIP6相对于CMIP5对不同区域极端降水模拟能力的改进有所区别:CMIP6对干旱区平均的气候态和变率方面改进明显,而对于湿润区的改进主要表现在对极端降水空间相关模拟能力的提高。综上,在中国地区,CMIP6相较于CMIP5对极端降水的模拟能力总体上有提升。   相似文献   

14.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   

15.
本文对中国参加CMIP5的6个气候模式对未来北极海冰的模拟情况进行了评估。通过与1979-2005年海冰的观测值以及2050年代的多模式集合平均值对比发现,中国的气候模式对海冰范围的模拟结果与CMIP5模式的平均水平存在一定差距,具体表现为:BNU-ESM和FGOALS-s2对当前海冰范围估计很好,但对温度敏感性略偏高;FIO-ESM对当前海冰范围估计很好,但由于海冰对温度的敏感性偏低,导致其模拟的未来海冰在各种RCP情景中都融化缓慢;FGOALS-g2(BCC-CSM1-1和BCC-CSM1-1-m)对当前海冰范围的模拟存在显著偏多(显著偏少)的问题,这导致其对未来海冰融化的估计也持续偏多(偏少)。中国模式对北极海冰的模拟偏差导致它们对极区地表大气温度和湿度的模拟出现偏差,并且这些极区气象要素的偏差会进一步通过动力过程传导到对秋、冬季西风带、极涡的模拟中去。研究表明:从对海冰本身的模拟以及海冰偏差带来的气候影响这两个角度看,BNU-ESM在中国模式中水平较高,但总体上中国6个气候模式在海冰分量的模拟上仍与世界平均水平存在差距,这需要中国各模式中心的持续改进。  相似文献   

16.
针对未来1~10 a气候状态的近期气候预测(年代际预测)是当前国际气候领域的研究热点。本文综述了中国科学院大气物理研究所发展的基于耦合气候系统模式的年代际气候预测系统IAP-DecPreS相关的研究进展。IAP-DecPreS系统的核心部分是耦合模式海洋分量初始化方案,“集合最优插值-分析增量更新”(EnOI-IAU)方案,该方案将集合最优插值(EnOI)和增量分析更新(IAU)结合起来,能够同化原始的海洋次表层温度廓线观测资料,对耦合模式进行初始化。系统的年代际回报试验表明,IAP-DecPreS对太平洋年代际振荡和大西洋多年代际变率的预测技巧与耦合模式比较计划第五阶段(CMIP5)技巧较高的模式相当。IAP-DecPreS系统被广泛应用于气候预测相关研究,包括火山气溶胶对年代际预测技巧的影响,全场同化和异常场同化两种不同的初始化方法对ENSO、印度洋偶极子模态和印度洋洋盆模态等的预测技巧的影响。最后,结合国际发展态势,对未来IAP-DecPreS的发展进行了讨论。  相似文献   

17.
使用多种观测资料和43个参加耦合模式比较计划第五阶段(CMIP5)的全球气候模式模拟数据,评估分析了全球气候模式对中国地区1980-2005年降水特征的模拟能力。结果表明:多数CMIP5模式能够模拟出中国降水由西北向东南递增的分布特点,这与耦合模式比较计划第三阶段(CMIP3)的模式模拟结果类似,但华南地区降水模拟偏少,西部高原地区降水模拟偏多。模式能够较好地模拟出降水冬弱夏强的季节变化特征,但降水模拟系统性偏多。从EOF分析结果来看,多数CMIP5模式可以再现中国地区年平均降水的时空变化特征,集合平均的表现优于CMIP3。多模式集合在月、季、年时间尺度下模拟的平均值优于大部分单个模式的结果。CMIP5中6个中国模式的模拟能力与其他模式相当,其中FGOALS-g2、BCC-CSM1-1-m的模拟能力相对较好。  相似文献   

18.
BCC模式及其开展的CMIP6试验介绍   总被引:2,自引:0,他引:2  
世界气候研究计划(WCRP)正在组织实施第六次国际耦合模式比较计划(CMIP6),国家气候中心作为参与单位之一,通过近几年的模式研发,推出3个最新模式版本参与该计划,包括含有气溶胶化学模块的地球系统模式BCC-ESM1.0、中等分辨率气候模式BCC-CSM2-MR和高分辨率气候模式BCC-CSM2-HR。除了CMIP6中的气候诊断、评估和描述试验(DECK)和历史气候模拟试验(Historical),这3个模式共将参与CMIP6中的10个模式比较子计划。文中主要介绍这3个模式的基本情况以及所开展的CMIP试验,并对BCC-CSM2-MR模式的Historical试验结果进行简要评估,为试验数据使用者提供参考。  相似文献   

19.
CMIP5气候模式对中国未来气候变化的预估和应用   总被引:2,自引:0,他引:2  
气候模式是研究气候系统和气候变化的有力工具,其模拟结果是进行气候预测和气候变化风险评估的重要数据基础。随着全球气候变暖速度加快,地表生态环境、水文动态循环过程、社会经济发展等都受到其影响,进而影响到人类的生产和生活。利用气候模式对未来气候变化特征进行评估和预测,可为人类调整发展策略以适应气候变化提供科学依据。通过汇总CMIP5(Coupled Model Intercomparison Project Phase 5)模式在气候变化方面的相关研究,综述了CMIP5气候模式在农业生产、水文动态监控以及其他领域中的应用,最后指出了CMIP5气候模式在模拟预估未来气候变化上存在的不足,并展望了CMIP5气候模式在未来的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号