首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An overview of Chinese contribution to Coupled Model Intercomparison Project–Phase 5(CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 project are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interannual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change projection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface temperature(SST) mean state, seasonal cycle, spatial patterns of Madden–Julian oscillation(MJO) amplitude and tropical cyclone Genesis Potential Index(GPI), global monsoon precipitation pattern, El Nio–Southern Oscillation(ENSO), and Pacific Decadal Oscillation(PDO) related SST anomalies. However, the performances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific monsoon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the20th-century global warming and the future change under representative concentration pathways projection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

2.
This study introduces a new global climate model--the Integrated Climate Model (ICM)--developed for the seasonal prediction of East Asian-western North Pacific (EA-WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of E1 Nifio as one of the most important factors on EA-WNP climate. ICM successfully reproduces the distribution of sea surface temperature (SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA-WNP climate E1 Nifio and the East Asia-Pacific Pattern--are also well simulated in ICM, with realistic spatial pattern and period. The simulated E1 Nifio has significant impact on EA-WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA-WNP climate.  相似文献   

3.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

4.
There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.  相似文献   

5.
We compare the ability of coupled global climate models from the phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6, respectively) in simulating the temperature and precipitation climatology and interannual variability over China for the period 1961–2005 and the climatological East Asian monsoon for the period1979–2005. All 92 models are able to simulate the geographical distribution of the above variables reasonably well.Compared with earlier CMIP5 models, current CMIP6 models have nationally weaker cold biases, a similar nationwide overestimation of precipitation and a weaker underestimation of the southeast–northwest precipitation gradient, a comparable overestimation of the spatial variability of the interannual variability, and a similar underestimation of the strength of winter monsoon over northern Asia. Pairwise comparison indicates that models have improved from CMIP5 to CMIP6 for climatological temperature and precipitation and winter monsoon but display little improvement for the interannual temperature and precipitation variability and summer monsoon. The ability of models relates to their horizontal resolutions in certain aspects. Both the multi-model arithmetic mean and median display similar skills and outperform most of the individual models in all considered aspects.  相似文献   

6.
This study introduces a new global climate model—the Integrated Climate Model(ICM)—developed for the seasonal prediction of East Asian–western North Pacific(EA–WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics(CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of El Nińo as one of the most important factors on EA–WNP climate. ICM successfully reproduces the distribution of sea surface temperature(SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA–WNP climate—El Nińo and the East Asia–Pacific Pattern—are also well simulated in ICM, with realistic spatial pattern and period. The simulated El Nińo has significant impact on EA–WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA–WNP climate.  相似文献   

7.
8.
The response of the Pacific Decadal Oscillation (PDO) to global warming according to the Fast Ocean Atmosphere Model (FOAM) and global warming comparison experiments of 11 IPCC AR4 models is investigated. The results show that North Pacific ocean decadal variability, its dominant mode (i.e., PDO), and atmospheric decadal variability, have become weaker under global warming, but with PDO shifting to a higher frequency. The SST decadal variability reduction maximum is shown to be in the subpolar North Pacific Ocean and western North Pacific (PDO center). The atmospheric decadal variability reduction maximum is over the PDO center. It was also found that oceanic baroclinic Rossby waves play a key role in PDO dynamics, especially those in the subpolar ocean. As the frequency of ocean buoyancy increases under a warmer climate, oceanic baroclinic Rossby waves become faster, and the increase in their speed ratio in the high latitudes is much larger than in the low latitudes. The faster baroclinic Rossby waves can cause the PDO to shift to a higher frequency, and North Pacific decadal variability and PDO to become weaker.  相似文献   

9.
The climatological mean state,seasonal variation and long-term upward trend of 1979–2005 latent heat flux(LHF) in historical runs of 14 coupled general circulation models from CMIP5(Coupled Model Intercomparison Project Phase 5) are evaluated against OAFlux(Objectively Analyzed air–sea Fluxes) data. Inter-model diversity of these models in simulating the annual mean climatological LHF is discussed. Results show that the models can capture the climatological LHF fairly well,but the amplitudes are generally overestimated. Model-simulated seasonal variations of LHF match well with observations with overestimated amplitudes. The possible origins of these biases are wind speed biases in the CMIP5 models. Inter-model diversity analysis shows that the overall stronger or weaker LHF over the tropical and subtropical Pacific region,and the meridional variability of LHF,are the two most notable diversities of the CMIP5 models. Regression analysis indicates that the inter-model diversity may come from the diversity of simulated SST and near-surface atmospheric specific humidity.Comparing the observed long-term upward trend,the trends of LHF and wind speed are largely underestimated,while trends of SST and air specific humidity are grossly overestimated,which may be the origins of the model biases in reproducing the trend of LHF.  相似文献   

10.
The tropical storm day(TSD)is a combined measure of genesis and lifespan.It reflects tropical cyclone(TC)overall activity,yet its variability has rarely been studied,especially globally.Here we show that the global total TSDs exhibit pronounced interannual(3-6 years)and decadal(10 years)variations over the past five-to-six decades without a significant trend.The leading modes of the interannual and decadal variability of global TSD feature similar patterns in the western Pacific and Atlantic,but different patterns in the Eastern Pacific and the Southern Indian Ocean.The interannual and decadal leading modes are primarily linked to El Ni?o-Southern Oscillation(ENSO)and Pacific Decadal Oscillation(PDO),respectively.The TSDs-ENSO relationship has been steady during the entire 55-year period,but the TSDs-PDO relationship has experienced a breakdown in the 1980 s.We find that the decadal variation of TSD in the Pacific is associated with the PDO sea surface temperature(SST)anomalies in the tropical eastern Pacific(PDO-E),while that in the Atlantic and the Indian Ocean is associated with the PDO SST anomalies in the western Pacific(PDO-W).However,the PDO-E and PDO-W SST anomalies are poorly coupled in the 1980 s,and this"destructive PDO"pattern results in a breakdown of the TSDs-PDO relationship.The results here have an important implication for seasonal to decadal predictions of global TSD.  相似文献   

11.
Based on 18 global climate models’ simulations of the 20th century climate, a set of experiments within phase five of the Coupled Model Inter-comparison Project (CMIP5), the performances of simulating the present climate over China are assessed. Compared with observations, models can capture the dominant features of the geographic distributions of temperature and precipitation during 1961-2005. For the temporal changes of temperature, models appear to have a good performance on reproducing the warming tendency but show limited skills for precipitation. For the regional mean temperature and precipitation over the whole of China, most models underestimate the actual temperature and overestimate precipitation. Concerning the standard deviations of simulations by the 18 models, they are larger for temperature in the western part of China, while the standard deviations are larger for precipitation in the South.  相似文献   

12.
Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.  相似文献   

13.
The eastern-and central-Pacific El Ni(n)o-Southem Oscillation (EP-and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean,and are characterized by interannual and decadal oscillation,respectively.In the present study,we defined the EP-and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields.We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5).The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode,but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes.Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP-and CP-ENSO,respectively.Since there are no changes in external forcing in the pre-industrial control runs,such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.  相似文献   

14.
A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5(Coupled Model Intercomparison Project Phase 5) models. The results reveal that the NCEP/NCAR, NECP/DOE, ERA40, ERA-Interim and JRA25 reanalyses are quite consistent in describing the climatology and annual cycle of the stratospheric circulation. The 20 CR reanalysis, however, exhibits a remarkable"cold pole" bias accompanied by a much stronger stratospheric polar jet, similar as in some CMIP5 models. Compared to the1–2 month seasonal drift in most coupled general circulation models(GCMs), the seasonal cycle of the stratospheric zonal wind in most earth system models(ESMs) agrees very well with reanalysis. Similar to the climatology, the amplitude of Polar Vortex Oscillation(PVO) events also varies among CMIP5 models. The PVO amplitude in most GCMs is relatively weaker than in reanalysis, while that in most of the ESMs is more realistic. In relation to the "cold pole" bias and the weaker oscillation in some CMIP5 GCMs, the frequency of PVO events is significantly underestimated by CMIP5 GCMs; while in most ESMs, it is comparable to that in reanalysis. The PVO events in reanalysis(except in 20CR) mainly occur from mid-winter to early spring(January–March); but in some of the CMIP5 models, a 1–2 month delay exists, especially in most of the CMIP5 GCMs. The long-term trend of the PVO time series does not correspond to long-term changes in the frequency of PVO events in most of the CMIP5 models.  相似文献   

15.
Abstract The authors evaluate the performance of models from Coupled Model Intercomparison Project Phase 5(CMIP5)in simulating the historical(1951-2000)modes of interannual variability in the seasonal mean Northern Hemisphere(NH)500 hPa geopotential height during winter(December-January-February,DJF).The analysis is done by using a variance decomposition method,which is suitable for studying patterns of interannual variability arising from intraseasonal variability and slow variability(time scales of a season or longer).Overall,compared with reanalysis data,the spatial structure and variance of the leading modes in the intraseasonal component are generally well reproduced by the CMIP5 models,with few clear differences between the models.However,there are systematic discrepancies among the models in their reproduction of the leading modes in the slow component.These modes include the dominant slow patterns,which can be seen as features of the Pacific-North American pattern,the North Atlantic Oscillation/Arctic Oscillation,and the Western Pacific pattern.An overall score is calculated to quantify how well models reproduce the three leading slow modes of variability.Ten models that reproduce the slow modes of variability relatively well are identified.  相似文献   

16.
In this paper,experiment results about East Asia climate from five CGCMs are described.Theability of the models to simulate present climate and the simulated response to increased carbon dioxideare both covered.The results indicate that all models show substantial changes in climate whencarbon dioxide concentrations are doubled.In particular,the strong surface warming at high latitudesin winter and the significant increase of summer precipitation in the monsoon area are produced by allmodels.Regional evaluation results show that these five CGCMs are particularly good in simulatingspatial distribution of present climate.The main characteristics of the seasonal mean H500,SAT,MSLP field can be simulated by most CGCMs.But there are significant systematic errors in SAT,MSLP,HS00 fields in most models.On the whole,DKRZ OPYC is the best in simulating the presentclimate in East Asia.  相似文献   

17.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

18.
The consistency of global atmospheric mass and water budget performance in 20 state-of-the-art ocean–atmosphere Coupled Model Intercomparison Project Phase 5 (CMIP5) coupled models has been assessed in a historical experiment. All the models realistically reproduce a climatological annual mean of global air mass (AM) close to the ERA-Interim AM during 1989–2005. Surprisingly, the global AM in half of the models shows nearly no seasonal variation, which does not agree with the seasonal processes of global precipitable water or water vapor, given the mass conservation constraint. To better understand the inconsistencies, we evaluated the seasonal cycles of global AM tendency and water vapor source (evaporation minus precipitation). The results suggest that the inconsistencies result from the poor balance between global AM tendency and water vapor source based on the global AM budget equation. Moreover, the cross-equatorial dry air mass ?ux, or hemispheric dry mass divergence, is not well represented in any of the 20 CMIP5 models, which show a poorly matched seasonal cycle and notably larger amplitude, compared with the hemispheric tendencies of dry AM in both the Northern Hemisphere and Southern Hemisphere. Pronounced erroneous estimations of tropical precipitation also occur in these models. We speculate that the large inaccuracy of precipitation and possibly evaporation in the tropics is one of the key factors for the inconsistent cross-equatorial mass ?ux. A reasonable cross-equatorial mass ?ux in well-balanced hemispheric air mass and moisture budgets remains a challenge for both reanalysis assimilation systems and climate modeling.  相似文献   

19.
A coupled earth system model(ESM) has been developed at the Nanjing University of Information Science and Technology(NUIST) by using version 5.3 of the European Centre Hamburg Model(ECHAM), version 3.4 of the Nucleus for European Modelling of the Ocean(NEMO), and version 4.1 of the Los Alamos sea ice model(CICE). The model is referred to as NUIST ESM1(NESM1). Comprehensive and quantitative metrics are used to assess the model's major modes of climate variability most relevant to subseasonal-to-interannual climate prediction. The model's assessment is placed in a multi-model framework. The model yields a realistic annual mean and annual cycle of equatorial SST, and a reasonably realistic precipitation climatology, but has difficulty in capturing the spring–fall asymmetry and monsoon precipitation domains. The ENSO mode is reproduced well with respect to its spatial structure, power spectrum, phase locking to the annual cycle, and spatial structures of the central Pacific(CP)-ENSO and eastern Pacific(EP)-ENSO; however, the equatorial SST variability,biennial component of ENSO, and the amplitude of CP-ENSO are overestimated. The model captures realistic intraseasonal variability patterns, the vertical-zonal structures of the first two leading predictable modes of Madden–Julian Oscillation(MJO), and its eastward propagation; but the simulated MJO speed is significantly slower than observed. Compared with the T42 version, the high resolution version(T159) demonstrates improved simulation with respect to the climatology, interannual variance, monsoon–ENSO lead–lag correlation, spatial structures of the leading mode of the Asian–Australian monsoon rainfall variability, and the eastward propagation of the MJO.  相似文献   

20.
The aim of the present study was to identify multi-decadal variability (MDV) relative to the current centennial global warming trend in available observation data.The centennial global wanning trend was first identified in the global mean surface temperature (STgm) data.The MDV was identified based on three sets of climate variables,including sea surface temperature (SST),ocean temperature from the surface to 700 m,and the NCEP and ERA40 reanalysis datasets,respectively.All variables were detrended and low-pass filtered.Through three independent EOF analyses of the filtered variables,all results consistently showed two dominant modes,with their respective temporal variability resembling the Pacific Decadal Oscillation/Inter-decadal Pacific Oscillation (PDO/IPO) and the Atlantic Multi-decadal Oscillation (AMO).The spatial structure of the PDO-like oscillation is characterized by an ENSO-like structure and hemispheric symmetric features.The structure associated with the AMO-like oscillation exhibits hemispheric asymmetric features with anomalous warm air over Eurasia and warm SST in the Atlantic and Pacific basin north of 10°S,and cold SST over the southern oceans.The Pacific and Atlantic MDV in upper-ocean temperature suggest that they are mutually linked.We also found that the PDO-like and AMO-like oscillations are almost equally important in global-scale MDV by EOF analyses.In the period 1975-2005,the evolution of the two oscillations has given rise to strong temperature trends and has contributed almost half of the STgm warming.Hereon,in the next decade,the two oscillations are expected to slow down the global warming trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号