首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大气中臭氧量的变化是重要的全球环境变化问题之一。国家自然科学基金49392700课题组完成了中国地区大气臭氧变化及其对气候环境影响的研究。通过国家自然科学基金委员会地球科学部转给南京气象学院大气资料服务中心中国几个站O3、NO、NO2、SO2等浓度观测资料,以及用于研究O3生成和破坏的化学模式,及配合提供气象条件的空气动力学模式,研究对气候影响的气候模式。共10张3.5寸软盘。以下作简要介绍。1 中国大气臭氧资料数据库本数据库主要包含1994年8月至1995年7月在黑龙江省龙凤山、浙江临安、青海…  相似文献   

2.
北极臭氧垂直分布和天气尺度变化的观测研究   总被引:2,自引:0,他引:2  
北极地区臭氧对北极气候和环境系统起着重要作用。研究其分布和变化有助于了解北极的气候和环境及其对全球气候系统的影响,有助于气候和环境变化的数值预报。中国北极科学探测1999在北冰洋楚可奇海域成功的进行了大气臭氧观测。通过在中国“雪龙”号破冰船甲板上(于1999年8月18-24日在75°N,160°W附近处)释放大气臭氧探空仪获得了高分辨率的大气垂直结构和臭氧分布资料,可以进行大气尺度的大气臭氧变化研究。分析大气监测资料、TOMS臭氧总量资料和NCEP大气环流资料表明,大气臭氧总量随着对流层顶的低一高一低变化呈高一低一高的变化过程。研究还表明,大气柱的臭氧总量与13公里以下的大气臭氧含量关系密切,而在约20公里处的大气臭氧浓度最大值的变化与整个气柱臭氧的关系不大。500 hPa天气形势图上一个弱一强一弱的西南天气型造成的弱臭氧平流可能是这次臭氧变化的主要原因。  相似文献   

3.
本项目由国家自然科学基金委员会面上项目《青藏高原大气臭氧和气溶胶的观测研究》和中国气象科学研究院大气化学开放实验室经费共同支持项目负责人为中国科学院大气物理研究所石广玉研究员和中国气象科学研究院汤洁副研究员。目的通过对青藏高原地区上空大气臭氧和相关前体物、气溶胶进行综合观测,研究青藏高原地区上空夏季大气臭氧低谷形成的过程、物理化学成因和机制。背景”八五一期间国家自然科学基金的重大项目”中国地区大气臭氧变化及其对气候环境的影响”的研究结果揭示了青藏高原地区上空夏季6-9月间存在着大气臭氧总量的异常低…  相似文献   

4.
青藏高原上空存在“臭氧低谷”的发现当选为1999年中国十大科技进展之一,列第3位。中国科学院和中国工程院共524名院士参加了投票,评选结果于2000年1月6日揭晓。我院科学家周秀骥等在国家自然科学基金重大项目“中国地区大气臭氧变化及其对气候环境的影响”的研究中,通过TOM  相似文献   

5.
为了宣传我国近几年来在气候和环境变化及其预测领域所取得的最新成就,提高我国在这些方面研究的学术水平,交流学术成果,促进世界气候和环境变化研究更快发展,中国科学院大气物理研究所、大气科学和地球流体力学国家重点实验室、国际气候与环境科学中心大气化学和大气边界层国家重点实验室、国家基础研究发展规划项目“我国重大气候灾害形成机理和预测理论的研究”,于2000年 8月7日至11日在上海联合举办”国际气候和环境变化及其可预测性研讨会”( International Con-ference on Climate a…  相似文献   

6.
《气候与环境研究》2006,11(1):108-108
由中国科学院资源环境与科学技术局、国家自然科学基金委员会地球科学部和生命科学部、军事医学科学院等单位联合主办的第五届“气象、环境与健康学术研讨会”拟于2006年10月中旬在辽宁省丹东市召开。现征集论文。一、会议征文范围1.天气气候和生态环境变化与人体健康;2.大气环  相似文献   

7.
概述了中国气象科学研究院 (简称气科院) 近30年来有关大气化学和大气环境研究成果。该院完成了国家自然科学基金重大项目和科技部973项目等一系列重要研究项目, 做出了许多具有重大创新性的成果:在青藏高原发现“臭氧低谷”, 这一重大发现列为当年中国10大科技成果之一; 首次把环境、生态、气候几个重要领域进行综合研究, 发现人类活动对环境造成的变化改变了生态环境状态, 最终对区域气候造成影响; 对北京市大气污染机理和调控原理进行了深入研究, 在三维立体观测基础上, 提出了点-面结合与统计-动力综合分析, 地面观测-卫星遥感分析方法及模式新技术等, 获取了解决大气环境领域关键技术难点的创新成果; 建立了全球第一个大陆大气本底基准观象台即瓦里关本底台, 开创了我国全球大气本底业务观测等。几十年来气科院大气化学研究工作几乎涵盖了当前大气化学所有重要领域及其前沿学科, 其中包括温室气体、臭氧和反应性气体、气溶胶、酸雨、模式的发展及应用、空气质量预报技术和环境评价等。气科院大气化学研究工作是和中国气象局大气成分监测站网建设密不可分的, 广大科研人员参加了诸如大气本底站网、酸雨站网、臭氧站网、沙尘暴站网等业务站网的建设, 与此同时也构建了大气化学科研平台。  相似文献   

8.
一、引言臭氧-气候问题在近五年内已经引起学者们的广泛注意,其主要原因是人们揭示了这样的可能性:人类活动可以明显地改变现有的大气臭氧浓度。而且,如Ramanathan所总结的,一些研究已经指出:太阳活动可以引起中层大气(即25公里以上的气层)中的臭氧浓度发生较大变化。本文将讨论由于臭氧浓度的波动和变化所能造成对对流层-平流层气候的可能影响。对流层臭氧的变化可以直接通过改变原来的对流层辐射增温率而影响气候,另一方面,平流层中的臭氧变化通过平流层和对流层之间的辐射与动力耦合机制,影响对流层的气候。首先,我们定性阐述这些相关机制的特征;然后,给出臭氧含量变化的各种类型,最后,归纳出考虑了臭氧含量变化之气候效应的模式。  相似文献   

9.
本研究是”九五”国家科技攻关计划98-927项目(南极地区对全球变化的响应和反馈作用研究)的第三专题,项目组织部门为国家海洋局极地考察办公室。目的以南极考察站为基地。采用有国际先进水平的观测仪器。对南极扰动电离层、极隙区/极盖区动力学、大气臭氧变化及冰雪与大气相互作用过程进行系统的监测和综合分析。研究南极大气和空间物理过程及其对全球变化的作用和响应模式。背景南极地区包括南极大陆、亚南极岛屿和环绕南极大陆的南大洋,是全球大气研究计划1(GARP)、世界气候研究计划(WCRP)及国际岩6圈一生物圈计划(旧BP)…  相似文献   

10.
1.973项目“中国大气气溶胶及其气候效应的研究”主要进展 中国气象科学研究院主持的国家重点基础研究发展计划项目“中国大气气溶胶及其气候效应的研究”在2010年年底完成,并顺利通过了项目验收。取得的主要研究进展如下:  相似文献   

11.
了全球性气候变主近15年来黑龙江省气候变暖的事实,揭示了气温变化主要影响因子--二化(CO2),太阳活动火山活动海气相互作用、大气五流和臭氧等对黑龙江省气温冷暖变化和定性和定量关系,并根据影响关系作出了黑龙江省未来10年气温变化的气候预测。  相似文献   

12.
平流层对对流层的作用是准确评估、预测对流层气候变化的一个重要方面。其中平流层成分尤其是臭氧的变化,可以改变平流层乃至对流层的辐射平衡,从而影响平流层、对流层的热动力过程。本文从辐射、动力2个角度介绍了平流层臭氧影响对流层气候变化的若干研究进展。平流层臭氧可以通过长短波辐射的方式对对流层大气造成辐射强迫,利用大气化学气候模式可以定量计算平流层臭氧变化引起的辐射强迫,但是辐射强迫的估算受模式中辐射传输模块本身缺陷的影响存在不确定性。动力方面,平流层臭氧变化产生的辐射效应可以改变温度的垂直和经向梯度,造成波折射指数的变化,进而影响平流层甚至对流层内波的折射与反射,通过上对流层下平流层区域内的波—流相互作用,对对流层气候产生影响。另外,南极臭氧损耗可通过大气环状模影响冬春季中高纬度对流层的天气气候,但是其影响的强度大小以及物理机制仍需进一步的确认。值得注意的是,北极平流层臭氧的变化与北半球中高纬度气候变化之间的关系相比南半球要更加复杂,需要更为深入的研究。  相似文献   

13.
毕道华  陈月娟 《大气科学》1993,17(5):513-522
本文介绍一个简单、经济的适用于各种多层大气环流模式中计算臭氧加热率的参数化方案,利用这一方案,可根据臭氧总量气候观测值及其垂直分布资料计算臭氧加热率,也可以在模式中加入臭氧方程,用预报的臭氧含量计算臭氧加热率.用此方案对单站气候资料试算,结果指出,随着高度的增加,臭氧吸收太阳辐射对大气太阳加热率的贡献逐渐接近、达到并在平流层50hPa附近明显超过其它物质如水汽的贡献.此方案用于九层大气环流模式时,对其辐射加热率的计算有较理想的改进,并使模拟的大气温度垂直分布更符合观测事实.  相似文献   

14.
对流层臭氧垂直分布变化对气候环境有重要的影响,然而观测数据一直较为稀缺。利用2016年7月下旬—8月青海省格尔木市对流层臭氧探空观测资料开展夏季青藏高原北部对流层臭氧垂直分布变化特征及其形成机制的大气背景研究。结果表明,在大气背景的转换下对流层臭氧垂直分布整体上呈现高(低)臭氧与低(高)水汽和高(低)位势涡度的对应。除7月25—27日高空低压槽过境导致的平流层向下输送使对流层臭氧浓度升高明显外,阻塞暖高压反气旋和源自青藏高原主体地区的强对流天气过境也对对流层臭氧分布有影响:阻塞暖高压在观测点东北部形成后导致7月31日至8月8日格尔木对流层连续出现罕见东风,但对流层臭氧浓度仅在8月2日因东北—西南方向反气旋切变而出现较高值,其中6 km高度以下则因为东风输送而出现高臭氧、高比湿的污染性气团;强对流天气过境影响使得8月12—14日10 km高度以上出现臭氧最低值和比湿最高值。与西宁历史夏季(1996年7—8月初)臭氧探空测值比较,格尔木对流层臭氧浓度8月偏低,该特征与季风影响青藏高原纬度最高地区所在月份一致。与林芝(2014年7月)、那曲(2011年7月末—8月中旬)和拉萨(1998年8月)历史夏季臭氧探空测值比较发现,纬度效应对青藏高原地区对流层臭氧浓度有影响。   相似文献   

15.
极地大气科学与全球变化研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
南极和北极是地球上的气候敏感地区, 也是多个国际科学计划研究全球气候变化的关键地区。极地大气科学考察与研究是极地科学研究的重要组成部分。中国气象科学研究院的极地大气科学考察与研究始于20世纪80年代, 25年来有较大进展。中国气象科学研究院参加了我国组织的23次南极考察、2次北冰洋考察和3次北极考察; 承担了南极长城站和中山站、北极黄河站气象业务建设和维持, 以及中-澳合作南极冰盖3个无人自动气象站工作; 进行了常规地面气象、Brewer大气臭氧、近地面物理、冰雪和大气化学等观测, 获得了较为系统的极地大气环境资料。开展了有关极地大气科学与全球变化的研究, 在极地天气气候特征及气候变化时空多样性、极地海冰变化和南极海冰涛动、极地近地面物理特征和海-冰-气相互作用、中山站臭氧变化特征及南极臭氧洞和大气化学、气候代用资料获取和古气候环境以及极地大气环境变化对东亚环流和中国天气气候影响等方面的研究取得了新进展。中国极地大气科学正积极通过多学科交叉、走国际合作道路, 努力提高对极地在全球变化中作用的认识水平, 并积极探索极地变化对我国气候、环境的影响。  相似文献   

16.
大气臭氧总量变化与大气环流关系的研究   总被引:7,自引:1,他引:7  
王贵勤  肖文俊 《大气科学》1987,11(3):337-340
近六十年的研究都证明了臭氧与大气环流有密切关系,问题在于各种大气运动对臭氧的影响程度及其物理机制需要进一步研究,并且已成为大家所关注的问题。本文把臭氧作为被动因子随着大气环流而迁移,在观测资料分析的基础上,阐明臭氧与大气环流的关系及其物理机制。  相似文献   

17.
南半球臭氧变化气候效应的数值模拟   总被引:3,自引:0,他引:3  
采用一个陆气耦合的9层谱模式模拟了南半球臭氧减少所产生的气候效应。数值试验结果表明,南半球臭氧的减少不仅对南半球温度场的 大气环流有影响,而且对北半球的温度场结构和大气环汉也有一定的影响。其气候效应具有全球性。南半球臭氧减少总体上可以使平流层中层以上大气降温、平流层低层增温、对流层顶附近降温。此外,在北半球冬半年期间,南半球臭氧的减少可使南北半球的副热带西风急流都减弱,极锋急流都增强;在北半球夏半  相似文献   

18.
人们为什么对大气中大量的臭氧感兴趣呢?其原因在于臭氧对大气的结构、特性,以致于地球上有生命物体有着巨大影响。大气中臭氧的存在使得波长小于290nm的太阳强紫外辐射不能透过大气。另外,臭氧还大量吸收了波长在290-320nm之间的中紫外辐射,波长在320-240nm的近紫外辐射才能通过臭氧层到达地面,但它对生物没有危害。今天无疑可以认为:由于大气中“臭氧盖”的存在,才能使人类免遭紫外辐射的有害影响,人类才能得以生存和发展。大气中臭氧总量的变化(臭氧含量平衡的破坏)影响了平流层中不同高度太阳紫外辐散流入量的分布,这就导致了平流层温度和高层大气  相似文献   

19.
南极臭氧洞对全球大气辐射加热场影响的数值模拟研究   总被引:2,自引:1,他引:1  
张弘  陈月娟  毕训强 《大气科学》1999,23(3):340-348
为了探讨南极臭氧洞对全球气候的影响状况,我们用IAP_9层全球大气环流模式进行了南极臭氧洞气候效应的数值试验。本文分析了本次试验中南极臭氧洞引起的大气辐射加热场的变化,结果表明,南半球高纬和极地平流层臭氧含量的严重减少,不仅影响该地的大气辐射加热场,同时也使北半球平流层大气的辐射加热场发生改变。虽然对流层中层所受影响较少,但对流层下层南北半球的大气总辐射加热率的变化却相当明显,这些影响将使全球大气温度场产生明显变化。  相似文献   

20.
短消息     
南京大气资料服务中心申请的地球科学部主任基金项目《基金会地学部南京大气资料服务中心建设》已获得国家自然科学基金委员会的资助批准。项目研究总目标是在“基金会地学部”和“南京大气资料服务中心”15年工作基础上,在三年(2009—2011年)内,建成“基金会地学部”大气科学基金项目产生的具有自主知识产权的资料规范化管理系统,使之成为基金项目可持续发展的一种资源。2009--2010年的目标是:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号