首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper summarizes some measurements of high-frequency turbulence made at Cardington during the years 1968, 1969 and 1970 at heights up to 900 m. It discusses the statistical distribution of the data which appears to be closely log-normal. Also it is shown how the mean profiles of the derived dissipation of turbulent kinetic energy () can be rationalized to some extent in terms of atmospheric stability and low-level wind speed. A close correlation between and the mean wind and temperature profiles up to 900 m is illustrated and some discussion of the turbulent energy budget throughout the boundary layer is presented. The use and limitations of the constant flux layer relations in calculatingz 0 andL from the estimates of, at the lower heights, is brought out.  相似文献   

2.
A model is presented to transform wind speed observations at a single height over sea or near the coast to any possible location and height in a topographic flat coastal region (up to distances of about 5 km from the coast and up to heights of 100 m). Only moderate and strong winds from the sea are considered, which are particularly important for wind energy applications. The model, called diabatic coast model, which is based on the well known internal boundary layer (IBL) concept and Monin-Obukhov similarity theory, describes the effects of the roughness transition from sea to land as well as the effect of stability on the shape of the profiles and the IBL growth. The predicted IBL heights are compared with published data.In the second part of this paper, the model is compared with measurements taken at the Maasvlakte location near the Dutch coast. It is shown that a neutral formulation of the IBL height is sufficient to model the overall mean wind speed with height, but that stability corrections are needed to describe the diurnal variations in wind speed properly. Finally, an application is given, where a single routine wind speed observation at the coast, combined with air-water temperature differences is used to predict the wind speed at 500m from the coast at heights of 10 and 53 m. The results are in good agreement with the measurements.  相似文献   

3.
In this paper we analyse diabatic wind profiles observed at the 213 m meteorological tower at Cabauw, the Netherlands. It is shown that the wind speed profiles agree with the well-known similarity functions of the atmospheric surface layer, when we substitute an effective roughness length. For very unstable conditions, the agreement is good up to at least 200 m or z/L–7(z is height, L is Obukhov length scale). For stable conditions, the agreement is good up to z/L1. For stronger stability, a semi-empirical extension is given of the log-linear profile, which gives acceptable estimates up to ~ 100 m. A scheme is used for the derivation of the Obukhov length scale from single wind speed, total cloud cover and air temperature. With the latter scheme and the similarity functions, wind speed profiles can be estimated from near-surface weather data only. The results for wind speed depend on height and stability. Up to 80 m, the rms difference with observations is on average 1.1 m s–1. At 200 m, 0.8 m s–1 for very unstable conditions increasing to 2.1 m s–1 for very stable conditions. The proposed methods simulate the diurnal variation of the 80 m wind speed very well. Also the simulated frequency distribution of the 80 m wind speed agrees well with the observed one. It is concluded that the proposed methods are applicable up to at least 100 m in generally level terrain.  相似文献   

4.
Statistics of atmospheric turbulence within and above a corn canopy   总被引:1,自引:2,他引:1  
Two three-dimensional split-film anemometers were used to measure turbulence statistics within and above a corn canopy. Normalised profiles of mean windspeed, root-mean-square velocity, momentum flux, and heat flux were constructed from half-hourly averages by dividing within-canopy measurements by the simultaneous canopy-top measurement. With the exception of the heat flux, these profiles showed consistent shape from day to day. Time series of the three velocity components were recorded on magnetic tape and subsequently analysed to obtain Eulerian time and length scales and the power spectrum of each component at several heights. The timescale was found to have a local minimum value at the top of the canopy. However the length scale L wformed from the timescale and the root-mean-square vertical velocity varied with height as L w 0.1 z. The power-spectra were non-dimensionalised to facilitate comparison of spectra at different heights and times. All spectra had -5/3 regions spanning at least two decades in frequency.  相似文献   

5.
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity (w), and cup anemometers to measure horizontal wind speed (s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral.Profiles of s and of the standard deviation ( w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy.Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.  相似文献   

6.
Wind speed and temperature profiles to a height of 8 m were recorded for 30-, 60-, and 90-min averaging times over a striated snow surface at the geographic South Pole during the austral winter of 1975. A gradient Richardson number was calculated for each averaging time to determine conditions of neutral stability under which the logarithmic wind law would hold. A log-linear regression technique was used to determine values of aerodynamic roughness height (Z 0) for those profile averages recorded in conditions of neutral stability. A plot of Z 0 as a function of average wind direction revealed a variation in Z 0 of almost three orders of magnitude, from 0.01 to 7 cm, over 120 deg of wind direction. A simple model is presented to justify the fact that aerodynamic roughness is a function of wind direction and erosion history.  相似文献   

7.
Stably stratified flow in a marine atmospheric surface layer   总被引:3,自引:1,他引:2  
Data from the marine atmospheric surface layer have been analysed. The data set consists of about two weeks with tower measurements up to 31 m of mean profiles of wind, temperature, and humidity, together with 20 Hz turbulence data. Mean wind, temperature, and humidity profiles up to 2000 m are also available from pibal trackings and radio soundings. Wave height was measured at 2 Hz, using an inverted echo-sounder.It was found from pibal wind profiles that low level jets were present during 2/3 of the measurements, having their maxima in the height interval 40 to 300 m. Here only data from the remaining 1/3 of the measurements, without low level jets, have been analysed.Non-dimensional wind and temperature gradients agree with results over homogeneous land surfaces as regards stability dependence during stable conditions that prevailed during this experiment. Linear regression gave m = 1 + 6.8z/L and m = 1 + 8.3z/L. No significant sea wave influence was found. The same was vrue for me dimensionless standard deviations of the three wind components, except for the vertical component. The expected wind speed dependence was found for the neutral drag coefficient, givingC dN = 0.109U + 0.33 at 10 m, and a dependence on the wave parameter,C/u *, was confirmed. Note, however, that the data set was restricted to low and moderate wind speeds and that stratification was mainly stable.Power spectra, non-dimensionalized according to suface-layer theories, do not follow the expected stability dependence. It was shown that this may be a consequence of the presence of gravity waves in the stable marine boundary layer. Indicators of gravity waves were found in most runs. The TKE budget agrees with findings over homogeneous land areas. The pressure transport term was found to be a source of energy also for near neutral conditions.  相似文献   

8.
Flux parameters, zero-plane displancement height and roughness length of a forest canopy are determined taking into consideration a transition layer and atmospheric diabatic influences. The present study, unlike previous studies by DeBruin and Moore (1985) and Lo (1990) that accounted for the velocity profile alone, make use of information from both wind and temperature profiles in formulating the governing equations. However, only the top level measurement is assumed to be within the logarithmic regime. In addition to the mass conservation principle (e.g., Lo, 1990; DeBruin and Moore, 1985), an analytic relationship between the Monin-Obukhov length and the bulk Richardson number is employed as the closure equation for the governing system.The present method is applied to profile measurements taken at Camp Borden (den Hartog and Neumann, 1984) in and above a forest canopy with mean crown height of about 18.5 m. Profile data under neutral or near-neutral conditions yieldedd=12.69 m andz 0=0.97 m, which are realistic values. In general,z 0 increases slightly with increasing wind yet remains relatively constant with respect to small variation of stabilities. On the other hand, increases of wind speed reduced values of displacement height,d, by as much as 50%. The influence, if any, of stability ond, however, is not clear from the results of the present study. The validity of using profile data of limited height is also carefully examined. At least for neutral or near-neutral stabilities, the present method can yield realistic results even though the profile heights are substantially below the transition layer height suggested by Garratt (1978).  相似文献   

9.
Summary In this paper, we evaluate the applicability of flux-gradient relationships for momentum and heat for urban boundary layers within the Monin-Obukhov similarity (MOS) theory framework. Although the theory is widely used for smooth wall boundary layers, it is not known how well the theory works for urban layers. To address this problem, we measured the vertical profiles of wind velocity, air temperature, and fluxes of heat and momentum over a residential area and compared the results to theory. The measurements were done above an urban canopy whose mean height zh is 7.3 m. 3-D sonic anemometers and fine wire thermocouples were installed at 4 heights in the region 1.5zh < z < 4zh. We found the following: (1) The non-dimensional horizontal wind speed has good agreement with the stratified logarithmic profile predicted using the semi-empirical Monin-Obukov similarity (MOS) function, when it was scaled by the surface friction velocity that is derived from the shear stress extrapolated to the roof-top level. (2) The scaled gradient of horizontal wind speed followed a conventional semi-empirical function for a flat surface at a level (z/zh = 2.9), whereas, in the vicinity of the canopy height was larger than the commonly-used empirical relationship. (3) The potential temperature profile above the canopy shows dependency on the atmospheric stability and the scaled gradient of temperature is in good agreement with a conventional shear function for heat. In the case of heat, the dependency on height was not found. (4) The flux-gradient relationship for momentum and heat in the region 1.5zh < z < 4zh was rather similar to that for flat surfaces than that for vegetated canopies.  相似文献   

10.
Field observations of the influence of topography on steady, neutrally-stratified boundary-layer flow were carried out in February 1981 and March 1984 on Kettles Hill near Pincher Creek, Alberta, Canada. The primary measurements were of wind speed at 3,6, and 10 m levels at stations in linear arrays along and across the major axis of this gentle, 1 km long and 100 m high, elliptical hill. Wind profile measurements up to heights of 200 m were made with TALA kites and tethersondes on the hilltop and at a reference site located about 3.7 km west of the hilltop. In addition, AIRsondes were flown and tracked from the reference site to provide additional data. The field observations provided the basic data for a comparison with wind-tunnel and numerical model simulations of the same flow. The wind-tunnel investigation was carried out in the Atmospheric Environment Service Boundary-Layer Wind Tunnel while the numerical model used was MS3DJH. For horizontal profiles of normalized mean wind speed at given heights above the prototype terrain, model results agree reasonably well with the field data. The wind-tunnel predictions are slightly high in most cases. For vertical profiles of wind speed up to 200 m above the hilltop, the numerical and wind-tunnel values are higher than were observed. The sensitivity of the normalized wind speed at the hilltop to deviations from non-logarithmic upwind profiles is demonstrated with data from the March 1984 experiment. A comparison of prototype with numerical-model mean-wind-direction perturbations at the 10 m level shows reasonable agreement except near the summit of the hill.Contractor: 24 Heslop Drive, Toronto.  相似文献   

11.
A numerical investigation of wind speed effects on lake-effect storms   总被引:2,自引:0,他引:2  
Observations of lake-effect storms that occur over the Great Lakes region during late autumn and winter indicate a high sensitivity to ambient wind speed and direction. In this paper, a two-dimensional version of the Penn State University/National Center for Atmospheric Research (PSU/NCAR) model is used to investigate the wind speed effects on lake-effect snowstorms that occur over the Great Lakes region.Theoretical initial conditions for stability, relative humidity, wind velocity, and lake/land temperature distribution are specified. Nine different experiments are performed using wind speeds ofU=0, 2, 4,..., 16 m s–1. The perturbation wind, temperature, and moisture fields for each experiment after 36 h of simulation are compared.It is determined that moderate (4–6 m s–1) wind speeds result in maximum precipitation (snowfall) on the lee shore of the model lake. Weak wind speeds (0U<4 m s–1) yield significantly higher snowfall amounts over the lake along with a spatially concentrated and intense response. Strong wind speeds (6<U16 m s–1), yield very little, if any, significant snowfall, although significant increases in cloudiness, temperature, and perturbation wind speed occur hundreds of kilometers downwind from the lake.  相似文献   

12.
More than 8000 10-min profiles of wind and temperature obtained during an extensive field experiment have been analyzed. The study was carried out in the environs of Valladolid (Spain) where a 100-m and a 6-m meteorological tower are located. Less than 20% of data were discarded due to equipment failure. Because of its exceptional flatness, the site is almost ideal for model performance comparisons.Predicted profiles of wind speed and potential temperature at 12, 26, 51, and 100 m heights were obtained using the methods proposed by Berkowicz and Prahm (1982) and San José (1983) based on values observed on a 6 m tower. Statistical t, F, and R tests were used to determine bias, scatter and correlation. The data were classified according to atmospheric stratification and height above ground. Finally, a determination was made of the predicted wind speeds and potential temperatures that fell within the 1 and 20% confidence ranges centered at the measured value. San José's method performed better than did that of Berkowicz and Prahm for the temperature profiles in both unstable and stable conditions. However, no significant differences were found for the wind speed profiles.  相似文献   

13.
Turbulence measurements above a pine forest   总被引:1,自引:0,他引:1  
Eddy fluxes of momentum, sensible and latent heat, and turbulence spectra measured over the Thetford Forest during 10 days in the Spring of 1973 are described. The measured total heat flux (H + E) for 122 20-min periods agreed closely on average with independent estimates from an energy balance method. There was evidence that the energy balance data gave small systematic overestimates of available energy during the hours before noon, compensated by slight underestimates for the remainder of the day. A comparison of measured wind speeds and friction velocities in neutral stability confirmed the validity of the aerodynamic method for estimating momentum fluxes at heights of a few roughness lengths above the canopy. In stable conditions the log-linear wind profileU = (u */k)(ln ((z -d)/z o) + (z -d -z o)/L) with = 3.4 ± 0.4 provided a good fit to the data. Spectra in unstable conditions were generally more sharply peaked than those measured by other workers over smoother terrain: differences were less marked in the case of vertical velocity in stable conditions. Temperature spectra in these stable conditions showed high energy at relatively low wavenumbers, andwT cospectra showed a cospectral gap; both of these results were associated with an intermittent sawtooth structure in the temperature fluctuations.Now at the Meteorological Office, Bracknell  相似文献   

14.
The micrometeorological research program in Antarctica has provided extensive data on wind and temperature profile structure under strong to extreme inversion conditions (Dalrymple et al., 1966; Lettau et al., 1977). The basic similarity hypotheses and limiting conditions for prediction of diabatic surface layer profiles are summarized. The model by Businger et al. (1971) for dimensionless shear and temperature gradients is revised to conform with the new results for strong stability. A novel similarity hypothesis is introduced to complete the step from shear and gradient prediction to prediction of absolute wind speed, wind energy, and temperature on the basis of prescribed external factors of surface layer structure. The physics of interactions between predicted profile tilting and curving are discussed and used to explain several micrometeorological paradoxes, including that of the elevated minimum of air temperature observed occasionally near the active surface when the energy budget is of the nocturnal type.  相似文献   

15.
Summary A number of well known diagnostic equations for the determination of the height,h, of the nocturnal boundary layer. with minimum data requirements of at most surface wind speed, air temperature and total cloud cover, have been tested as to their effectiveness. The computed values have been compared with direct estimation ofh, from temperature or wind profiles of rawinsonde ascents available at 00Z (02h LST). The comparison between computed and observed values shows that best agreement is found when the nocturnal boundary layer height is determined through wind profiles. The ratio of the computed to the observed values reveals a strong dependence on stability, resulting in overestimation by the models for very low stability and underestimation for strong stability. The simple expressions involving the wind speed rather than other stability parameters resulted in a better overall fit to the observed values. A simple prognostic model is shown to provide the best estimates of the NBL height compared to both wind and temperature profile definition.With 5 Figures  相似文献   

16.
Wind speed profiles above a forest canopy relate to scalar exchange between the forest canopy and the atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can be classified by a stability index developed assuming wind flow above a flat plane. However, can such a stability index be used to classify vertical wind speed profiles observed above a sloping forest at nighttime, where drainage flow often occurs? This paper examines the use of the bulk Richardson number to classify wind speed profiles observed above a sloping forest at nighttime. Wind speed profiles above a sloping forest were classified by the bulk Richardson number Ri B . Use of Ri B distinguished between drainage flow, shear flow, and transitional flow from drainage flow to shear flow. These results suggest that Ri B is useful to interpret nighttime CO2 and energy fluxes above a sloping forest. Through clear observational evidence, we also show that the reference height should be high enough to avoid drainage-flow effects when calculating Ri B .  相似文献   

17.
We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters ( $D$ D ) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately $2D$ 2 D directly south of a wind turbine; the other lidar was moved approximately $3D$ 3 D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43–117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.  相似文献   

18.
Four models of surface boundary-layer flow in complex terrain are compared with observations made at Blashaval Hill, North Uist, Scotland. The field experiment is described by Mason and King (1985). Three of the models are derived from the two-dimensional theory of Jackson and Hunt (1975) and are described in Mason and King (1985), Walmsley et al. (1986) and Troen and Petersen (1989). The fourth is a mass-consistent code based on Traci et al. (1979). The model results are in good agreement with each other and are generally within the observed range of variation ( ~ ± 16%) in normalized wind speed. For most wind direcions (7 of 11), model results of normalized wind speed at the summit were within 7% of the observed mean values. For some wind directions, calculations using the Guidelines of Walmsley et al. (1989) suggested that variations in surface roughness were important. This led us to apply one of our models incorporating nonuniform surface roughness. The lack of significant improvement for cases when water lay upstream of Blashaval Hill is attributed to compensating changes at summit and reference sites and to very local effects on the wind data. Sensitivity to topography lying to the west and northwest of Blashaval was also investigated. Results suggested an influence from those distant topographic features for some wind directions. When those features were incorporated, maximum errors in normalized wind speed at the summit were reduced from 18 to 13%.  相似文献   

19.
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate \(\epsilon \), the length scale of energy-containing eddies \(\mathcal {L}\), a turbulence anisotropy parameter \(\varGamma \), the Richardson number Ri, and the normalized rate of destruction of temperature variance \(\eta _\theta \equiv \epsilon _\theta /\epsilon \). Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin–Obukhov similarity theory, where z is the height above the Earth’s surface, and L is the Obukhov length corresponding to \(\{Ri,\eta _\theta \}\). Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale \(\sim \) 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.  相似文献   

20.
The Weibull distribution is commonly used to describe climatological wind-speed distributions in the atmospheric boundary layer. While vertical profiles of mean wind speed in the atmospheric boundary layer have received significant attention, the variation of the shape of the wind distribution with height is less understood. Previously we derived a probabilistic model based on similarity theory for calculating the effects of stability and planetary boundary-layer depth upon long-term mean wind profiles. However, some applications (e.g. wind energy estimation) require the Weibull shape parameter (k), as well as mean wind speed. Towards the aim of improving predictions of the Weibull- \(k\) profile, we develop expressions for the profile of long-term variance of wind speed, including a method extending our probabilistic wind-profile theory; together these two profiles lead to a profile of Weibull-shape parameter. Further, an alternate model for the vertical profile of Weibull shape parameter is made, improving upon a basis set forth by Wieringa (Boundary-Layer Meteorol, 1989, Vol. 47, 85–110), and connecting with a newly-corrected corollary of the perturbed geostrophic-drag theory of Troen and Petersen (European Wind Atlas, 1989, Risø National Laboratory, Roskilde). Comparing the models for Weibull-k profiles, a new interpretation and explanation is given for the vertical variation of the shape of wind-speed distributions. Results of the modelling are shown for a number of sites, with a discussion of the models’ efficacy and applicability. The latter includes a comparative evaluation of Wieringa-type empirical models and perturbed-geostrophic forms with regard to surface-layer behaviour, as well as for heights where climatological wind-speed variability is not dominated by surface effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号