首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary Homogeneous wind measurements during summer 1971 and the 2 years 1977/78 were analysed at 3 sites of Hintereisferner (HEF) which is a valley-type glacier of 9 km length and northeasterly exposition in the Austrian Ötztal Alps. Some manifestations of glacier winds were found to verify a mesoscale circulation driven by gravity and differential heating of the air above ice surfaces and their ice free moraine surroundings. Modifications are mainly due to local topography and gradient winds.Throughout the year the wind regime at the glacier, esp. at the tongue, is clearly dominated by downsloping winds, reflecting the great potential of snow and ice areas in generating cold air downflow. Undisturbed glacier winds were found to occur most likely on sunny days with weak upper air winds. An influence of katabatic winds down from surrounding moraine slopes is indicated during night time hours. During sunlit hours the occurrence and strength of glacier winds is clearly correlated to the seasonal and daily solar cycle. The development of a regular diurnal variation of wind speeds with a single maximum about 5 m/s during afternoon hours is typical for the glacial wind regime and is most pronounced during the melting season. The observed wind speeds correspond with the diurnal development of vertical and horizontal temperature gradients of the air above the glacier.Clear day northerly winds penetrate most frequently in spring and autumn as far as to the tongue of HEF and are likely to represent thermally driven upvalley winds. They characterize fine weather in alpine valleys, when even signs of a local slope circulation above excessively heated moraine surfaces are indicated too.With 14 Figures  相似文献   

2.
The surface wind field is an important factor controlling the surface mass balance of Antarctica. This paper focuses on the observed atmospheric circulation during summer of an Antarctic blue ice area in Queen Maud Land. Blue ice areas are characterised by a negative surface mass balance and henceforth provide an interesting location to study the influence of meteorological processes on large local mass balance gradients. During lapse conditions, synoptic forcing determines the surface-layer flow. No significant horizontal temperature gradient with coastal stations could be detected along isobaric surfaces, indicating weak or absent thermal wind. Observations performed at the coastal stations Halley and Georg von Neumayer show the pronounced effects of synoptic forcing. The surface winds in the valley of the blue ice area could be divided into two distinct flow patterns, occurring with about equal frequency during the experiment. Flow type I is associated with cyclonic activity at the coast, resulting in strong easterly winds, precipitation and drifting snow. Flow characteristics inside and outside of the valley are similar during these conditions. Flow type II occurs when a high pressure system develops in the Weddell Sea, weakening the free atmosphere geostrophic winds. A local circulation is able to develop inside the valley of the blue ice area during these tranquil conditions. The transition from flow type II to flow type I is associated with front-like phenomena inside the valley. Some simple theoretical considerations show that surface-layer stability and the upper air geostrophic wind determine the surface flow direction in the valley. Finally, the influence of the observed circulation on the energy and mass balance of the blue ice area is discussed.  相似文献   

3.
Intensive observations of summertime up- and down-valley winds in a dry valley utilising airsondes, pilot balloons and a monostatic acoustic sounder are described. Both circulations show a distinctive layered vertical wind and temperature structure. Westerly down-valley flow is typically neutral and is characterised by strong surface winds overlain by light variable winds extending to an inversion between 2000 and 4000m in depth. Above this inversion, gradient winds prevail. This structure is similar to that of downslope winds observed elsewhere. The thermally-induced up-valley easterly flow is shown to be extremely well-developed in terms of its strength, depth and persistence. The strong surface easterly may reach 800 m in depth and usually undercuts the warmer westerly. The boundary between the two regimes is marked by an inversion. During easterly flow a surface-based, super-adiabatic layer of 100–200 m in depth is evident and is associated with weak convective activity. An intriguing aspect of the wind regime is the interaction between the easterly and westerly circulations in the valley. These are separated at the surface by a frontal zone which migrates up and down the valley. Further observational and modelling studies are recommended.  相似文献   

4.
Abstract

Analysis of satellite images of southeastern Hudson Bay taken over aperiod of 13 years led to the classification of ice distribution into three categories. The first category is for complete fast‐ice cover of the area, the second for fast ice covering only half the area and the third for the absence of fast ice extending away from the coast. Of the three factors considered‐ wind, water circulation and air temperature—the occurrence of strong southwesterly winds during the freezing period is probably the main factor regulating the extent of the fast‐ice cover for the first two categories. Through melting action, above‐freezing air temperatures appear to prevent the consolidation of ice into a solid cover giving rise to the rare third category of ice distribution.  相似文献   

5.
The climate and hydrology of the Western Himalayas is complex and a function of snow and glacier melt, land use, topography, and Indian summer and winter monsoon dynamics. Improving our knowledge about these processes is important from societal and agricultural points of view. In this study, an observational analysis is carried out to assess the changing climatic trends and the associated interannual variability in winter temperature and precipitation at three glacierized regions of Western Himalayas having distinctly different sub-regional characteristics. In situ observations of 23 years (1985–2007) are used. These observations are passed through rigorous statistical quality control checks. Results show higher interannual variability with increasing temperature trends in the glacierized regions of the Siachen (Karakoram Range) and Chotasigri (Great Himalayan Range). Karakoram Range has higher warming trends than the Great Himalayan Range. In case of precipitation, an overall decrease in precipitation is observed with contrasting trends in the last decade. Nino3.4 index is positively correlated with winter precipitation with similar interannual variability. In addition, at Siachen temperature and precipitation show strong negative correlation, and precipitation to spell length correlation is opposite at Siachen and Chotasigri.  相似文献   

6.
Ground-based measurements are essential for understanding alpine glacier dynamics, especially in remote regions where in-situ measurements are extremely limited. From 1 May to 22 July 2005 (the spring-summer period), and from 2 October 2007 to 20 January 2008 (the autumn-winter period), surface radiation as well as meteorological variables were measured over the accumulation zone on the East Rongbuk Glacier of Mt. Qomolangma/Everest at an elevation of 6560 m a.s.l. by using an automatic weather station (AWS). The results show that surface meteorological and radiative characteristics were controlled by two major synoptic circulation regimes: the southwesterly Indian monsoon regime in summer and the westerlies in winter. At the AWS site on the East Rongbuk Glacier, north or northwest winds prevailed with high wind speed (up to 35 m s-1 in January) in winter while south or southeast winds predominated after the onset of the southwesterly Indian monsoon with relatively low wind speed in summer. Intensity of incoming shortwave radiation was extremely high due to the high elevation, multiple reflections between the snow/ice surface and clouds, and the high reflective surrounding surface. These factors also caused the observed 10-min mean solar radiation fluxes around local noon to be frequently higher than the solar constant from May to July 2005. The mean surface albedo ranged from 0.72 during the spring-summer period to 0.69 during the autumn-winter period. The atmospheric incoming longwave radiation was greatly affected by the cloud condition and atmospheric moisture content. The overall impact of clouds on the net all-wave radiation balance was negative in the Mt. Qomolangma region. The daily mean net all-wave radiation was positive during the entire spring-summer period and mostly positive during the autumn-winter period except for a few overcast days. On monthly basis, the net all-wave radiation was always positive.  相似文献   

7.
一次回流型降雪过程的成因和相态判据分析   总被引:1,自引:0,他引:1  
杨晓君  张楠  陈宏  韩婷婷 《气象科技》2019,47(1):98-105
利用常规高空和地面观测资料、天津铁塔和雷达资料、全球资料同化系统(GDAS)分析资料、雷达变分同化分析系统资料、EC和NCEP再分析资料对2016年11月20—21日天津初雪天气进行成因分析,结果表明:本次过程是在高空槽和回流冷空气共同作用下产生的,主要水汽来源为对流层中低层槽前西南暖湿气流和回流东风,回流东风经渤海低空运行时吸收水汽由"干冷"变为"湿冷";动力条件主要来自回流冷垫的动力抬升作用,降水期间回流东风层厚度由1.5km增加至2km;锋面上的非地转次级环流可将回流东风水汽向上输送成为降水原料,同时可加强其上暖湿空气的垂直上升运动;高空云水粒子向云冰粒子的转换和边界层回流冷空气加强对本次雨雪相态转换是不可或缺的,回流冷空气北风分量风速和厚度陡增、800~950hPa出现均温层、云冰粒子陡增并向低空延伸、700~850hPa与850~1000hPa厚度的变化特征对雨雪相态的判别均有较好的指示作用。  相似文献   

8.
Based on high-quality data from eddy covariance measurements at the Qomolangma Monitoring and Research Station for Atmosphere and Environment(QOMS) and the Southeast Tibet Monitoring and Research Station for Environment(SETS),near-ground free convection conditions(FCCs) and their characteristics are investigated. At QOMS, strong thermal effects accompanied by lower wind speeds can easily trigger the occurrence of FCCs. The change of circulation from prevailing katabatic glacier winds to prevailing upslope winds and the oscillation of upslope winds due to cloud cover are the two main causes of decreases in wind speed at QOMS. The analysis of results from SETS shows that the most important trigger mechanism of FCCs is strong solar heating. Turbulence structural analysis using wavelet transform indicates that lowerfrequency turbulence near the ground emerges from the detected FCCs both at QOMS and at SETS. It should be noted that the heterogeneous underlying surface at SETS creates large-scale turbulence during periods without the occurrence of FCCs. Regarding datasets of all seasons, the distribution of FCCs presents different characteristics during monsoonal and non-monsoonal periods.  相似文献   

9.
HEST2007珠峰北坡风廓线观测研究   总被引:3,自引:0,他引:3  
邹捍  李鹏  朱金焕  马舒坡  李爱国 《高原气象》2007,26(6):1199-1207
为了研究青藏高原南部喜马拉雅山区局地大气环流系统,继2006年HEST2006大气科学实验之后,2007年中国科学院大气物理研究所和中国科学院青藏高原研究所在珠穆朗玛峰北坡实施HEST2007综合观测.本文使用该观测实验中LAP-3000风廓线仪获得的绒布河谷内三维风场观测资料,并结合地面辐射资料,分析研究了该地区观测期间局地大气环流的日变化和逐日变化过程.研究表明,该地区局地环流系统,特别是沿河谷的轴向风,与其上空西风环流间存在非常紧密的联系,这种联系似乎与不同天气条件下喜马拉雅山区的大气辐射状况有关,即高层西风环流较强的阶段,地面辐射较强,激发出的局地环流也较强,反之亦然.  相似文献   

10.
Both observational and numerical studies suggest that the Eurasian winter snow cover has a strong influence on the subsequent summer monsoon in Asia. An updated version of the ARPEGE climate model of Météo-France, including a simple but physically-based snow parameterization, is used to test the impact of an increased snow mass prescribed at the beginning of March on the simulated summer monsoon circulation and rainfall. The large-scale features of the Asian monsoon are reproduced in a realistic way in the control integration, which is a necessary premise of such a sensitivity test. In the heavy snow cover experiment, the anomalous persistence of the winter snow pack delays the springtime continental heating. This weakens the thermal low over northern India and Persia as well as the southwesterly winds over the monsoon area. There is also a significant decrease in the rainfall over western India and Bengal-Burma, which usually represent the centers of maximum precipitation. Radiative, turbulence transfer and hydrological processes seem to be involved in the snow-monsoon relationship. The changes in the monsoon precipitation are strongly related to changes in the atmospheric circulation and are not reinforced by a local evaporation/convection feedback in our experiment. Received: 17 May 1995 / Accepted: 27 November 1995  相似文献   

11.
12.
Abstract

Anemometer‐measured winds for the period 5–13 March 1994 were used to study the coherence of observed and forecast coastal winds along the mid‐Labrador shelf. The reliability of these variables in predicting the response of the ocean and ice to wind forcing is an important issue for ice forecasting in this area. Two anemometer‐equipped 2‐m ice beacons were deployed on pack ice north of Wolf Island and a third beacon was deployed on Grady Island. The results indicate that due to the influence of local topography, 10‐m winds observed at the meteorological station in Cartwright, Labrador provide a poor estimate (r2 = 0.2) of wind conditions over the offshore sea‐ice. In contrast, the σ = 1 level (~10 m) winds from the Canadian Meteorological Centre's Regional Finite Element (RFE) model provided a better correlation with anemometer beacon winds (0.90 for the 6‐hour forecast down to 0.45 at 36 hours). However, the RFE model overestimates the magnitude of the winds by 10–40%.

The response of the ocean and ice cover to wind forcing was measured by an ocean bottom‐mounted acoustic Doppler current proþler (ADCP). Relative to the 2‐m beacon winds, the ice moved at 2.5% of wind magnitude and turned 0.6° to the left of the wind. The ocean response decreased with depth until it reached a constant value of 0.9% of the wind speed. The turning angle increased from 0.3° to the right of the wind at 3.5 m to 50° at the lowest level measured by the ADCP (73 m depth). Approximately 57% of the variance in the ocean currents at 3 m below the surface can be attributed to the 2‐m winds; at 73 m the explained variance decreases to 27%.  相似文献   

13.
 Recent observational and numerical studies of the maritime snow cover in the Antarctic suggest that snow on top of sea ice plays a major role in shaping the seasonal growth and decay of the ice pack in the Southern Ocean. Here, we make a quantitative assessment of the importance of snow accumulation in controlling the seasonal cycle of the ice cover with a coupled snow–sea-ice–upper-ocean model. The model takes into account snow and ice sublimation and snow deposition by condensation. A parametrisation of the formation of snow ice (ice resulting from the freezing of a mixture of snow and seawater produced by flooding of the ice floes) is also included. Experiments on the sensitivity of the snow–sea-ice system to variations in the sublimation/condensation rate, the precipitation rate, and the amount of snowfall transported by the wind into leads are discussed. Although we focus on the model response in the Southern Hemisphere, results for the Arctic are also discussed in some cases to highlight the relative importance of the processes under study in both hemispheres. It is found that the snow loss by sublimation can account for the removal of 0.45 m of snow per year in the Antarctic and that this loss significantly affects the total volume of snow ice. A precipitation decrease of 50% is conducive to large reductions in the Antarctic snow and snow-ice volumes, but it leads only to an 8% decrease in the annual mean ice volume. The Southern Ocean ice pack is more sensitive to increases in precipitation. For precipitation rates 1.5 times larger than the control ones, the annual mean snow, ice, and snow-ice volumes augment by 30, 20, and 180%, respectively. It is also found that the transfer to the ocean of as much as 50% of the precipitating snow as a result of wind transport has almost negligible effects on the total ice volume. All the experiments exhibit a marked geographical contrast in the ice-cover response, with a much larger sensitivity in the western sector of the Southern Ocean than in the eastern sector. Our results suggest that snow-related processes are of secondary importance for determining the sensitivity of the Arctic sea ice to environmental changes but that these processes could have an important part to play in the response of the Antarctic sea-ice cover to future, or current, climatic changes. Received: 30 June 1997/Accepted: 2 October 1998  相似文献   

14.
张海宏  肖建设  陈奇  姜海梅 《气象》2019,45(8):1093-1103
利用青海省甘德两次降雪过程的微气象观测数据,探讨了两场降雪过程雪深、雪密度、雪中含冰量、雪中含水量和雪面温度的变化情况,分析了地表反照率与雪密度、雪中含冰量及雪中含水量的关系,结合降雪过程近地面温、湿、风廓线特征分析了积雪对近地面温、湿、风梯度的影响。结果表明:积雪覆盖会导致地表反照率显著增加,降雪过后正午时地表反照率可高达0.8~0.9。随着积雪的消融,地表反照率逐渐减小;积雪反照率与雪密度和雪中含冰量呈正相关,与雪中含水量呈负相关;地表积雪覆盖会导致近地面温度梯度绝对值减小,相对湿度梯度绝对值在凌晨减小、午后增大,地表积雪覆盖对近地面风速梯度变化并无特定的影响。  相似文献   

15.
海陀山作为北京冬(残)奥会的主要室外赛场之一,其复杂的地形对风场的精细化预报提出了严峻的挑战,亟需开展加密的风场观测提高对复杂地形下局地环流特征及其影响机理的认识,并为提升赛区精细化预报与服务提供数据支撑.基于2019年度海陀山观测试验,利用加密自动气象站、激光测风雷达、涡动相关仪、云高仪等多源数据,对海陀山风场的水平...  相似文献   

16.
The interaction of katabatic winds with ambient winds has been investigated for an idealized valley using Clark's nonhydrostatic model. Ambient ridgetop wind speeds ranged from 0.5 to 6 m/s, and made angles with the valley axis ranging from 0 ° to 90 °: cooling of the valley was based on measured values of sensible heat fluxes taken from observations in Colorado's Brush Creek Valley. The depth and strength of the down-valley winds decreased with increasing ambient wind speeds but showed relatively little sensitivity to wind directions in the range of 10 ° to 60 ° from the valley axis. An observed inverse linear decrease of drainage depth with wind speed in a 100 m thick layer above the ridgetops was also found in the simulations for parts of the valley but not near the valley mouth. Vertical motions over the valley showed marked patchiness, and implications of this structure on valley flow dynamics are discussed.This work was supported by the U.S. Department of Energy (DOE) under Contract DE-AC06-76RLO 1830.  相似文献   

17.
Summary ?This study presents the monthly climatology and variability of the INSAT (Indian National Satellite) derived snow cover estimates over the western Himalayan region. The winter/spring snow estimates over the region are related to the subsequent summer monsoon rainfall over India. The NCEP/NCAR data are used to understand the physical mechanism of the snow-monsoon links. 15 years (1986–2000) of recent data are utilized to investigate these features in the present global warming environment. Results reveal that the spring snow cover area has been declining and snow has been melting faster from winter to spring after 1993. Connections between snow cover estimates and Indian monsoon rainfall (IMR) show that spring snow cover area is negatively related with maximum during May, while snow melt during the February–May period is positively related with subsequent IMR, implying that smaller snow cover area during May and faster snow melt from winter to spring is conducive for good monsoon activity over India. NCEP/NCAR data further shows that the heat low over northwest India and the monsoon circulation over the Indian subcontinent, in particular the cross-equatorial flow, during May are intensified (weakened) when the snow cover area during May is smaller (extensive) and snow melts faster (slower) during the February–May period. The well-documented negative relationship between winter snow and summer rainfall seems to have altered recently and changed to a positive relationship. The changes observed in snow cover extent and snow depth due to global warming may be a possible cause for the weakening winter snow–IMR relationship. Received January 15, 2002; revised May 5, 2002; accepted June 23, 2002  相似文献   

18.
In this paper, the role of westerly winds at southern high latitudes in global climate is investigated in a fully coupled ocean-atmosphere general circulation model. In the model, the wind stress south of 40°S is turned off with ocean and atmosphere fully coupled both locally and elsewhere. The coupled model explicitly demonstrates that a shutdown of southern high latitude wind stress induces a general cooling over the Antarctic Circumpolar Current (ACC) region, with surface Ekman flow and vertical mixing p...  相似文献   

19.
利用1951-2013年广西90个气象观测站气温资料、国家气候中心74项指数和美国National Oceanic and Atmospheric Administration(NOAA)的Climate Prediction Center(CPC)60项指数以及海温和陆地雪盖资料、美国国家冰雪研究中心(NSIDC)的两极海冰资料,使用相关分析方法得到广西寒露风开始期气候影响因子,利用逐步回归和神经网络方法进行寒露风开始期的预测。结果表明:寒露风开始期与前一年9-10月北极海冰面积、当年3月南极海冰面积、前一年6月欧亚雪盖、当年5月北美雪盖、北半球雪盖的相关显著。与前一年9月北半球极涡面积指数、前一年10月亚洲区极涡面积指数、前一年3月热带印度洋海温偶极子等指数相关显著。粒子群-神经网络方法预测误差低于逐步回归方法,预报能力有明显提高。  相似文献   

20.
20世纪90年代末东亚冬季风年代际变化的外强迫因子分析   总被引:1,自引:0,他引:1  
使用NCEP/NCAR、英国气象局哈德莱中心(Met Office Hadley Center)Had ISST以及NOAA提供的再分析资料分析了海温、海冰及雪盖异常对20世纪90年代末我国冬季气温和东亚冬季风(EAWM)年代际跃变的外部强迫作用,同时也对比分析了20世纪90年代EAWM年代际跃变与20世纪80年代EAWM年代际跃变特征和成因的一些差异。结果表明:20世纪80年代中期EAWM的年代际变化特征主要表现为全国一致偏冷型,同时中国近海的海温也偏低;该年代际变化的主要原因来自大气内部动力过程,而海温和海冰的作用不显著。20世纪90年代末EAWM年代际变化的特征表现为东亚北方气温显著偏冷而南方偏暖的南北反相变化分布;EAWM在20世纪90年代末的年代际变化受北大西洋海温和热带太平洋海温的共同影响。北大西洋显著的异常暖海温,激发一个向下游传播的波列,使得西伯利亚高压加强,EAWM加强,从而导致我国北方气温下降;同时,秋冬季北极海冰异常偏少和秋季欧亚雪盖偏多对东亚冬季风的增强也有一定的作用。此外,热带西太平洋的暖海温异常会导致在海洋性大陆地区有异常的辐合和对流增强,引起大气环流的Gill型响应,对流西侧的异常气旋在孟加拉湾至我国西南地区出现南风异常,使得东亚南部地区温度偏高。因此,20世纪90年代末之后东亚温度呈现南暖北冷的分布特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号