首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
中国森林乔木林碳储量及其固碳潜力预测   总被引:5,自引:0,他引:5  
加强对我国森林碳储量和固碳潜力的研究,是制定中国增汇减排政策的重要依据,对我国国际气候谈判和全面了解森林碳汇潜力具有重要作用。利用我国第七次和第八次森林资源清查中各优势树种的面积和蓄积量数据,采用IPCC材积源生物量法(volume-biomass method),估算了我国森林(乔木林)碳储量和碳密度及其分布,分析我国不同省份天然乔木林和人工乔木林碳储量龄组结构特征;建立分区域、分起源主要优势树种的单位面积蓄积-林龄Logistic生长方程,结合我国森林2020年和2030年面积蓄积增长目标,预测我国乔木林2010—2050年间碳汇潜力。结果表明:第八次清查期间中国乔木林总碳储量为6135.68 Tg,碳密度为37.28 Mg/hm 2;天然乔木林和人工乔木林的碳储量分别为5246.07 Tg和889.61 Tg,分别占总碳储量的85.50%和14.50%。到2050年,中国乔木林和新造林的总碳储量和平均碳密度将分别达到11125.76 Tg和52.52 Mg/hm 2,与2010年相比分别增加81%和41%。分析结果表明中国乔木林有很大的碳汇潜力,将在应对和减缓全球气候变化中发挥重要作用。  相似文献   

2.
科学应对气候变化 建设江西生态文明   总被引:1,自引:0,他引:1  
阐述了科学应对气候变化对实现“建设生态文明”战略目标的重要性。结合江西实际,分析了气候变化对江西农业、水资源、森林和其他生态系统的影响。在此基础上,提出了江西应对气候变化应采取的措施:一是进一步优化能源结构,大力发展循环经济,加强节能减排管理,以减缓温室气体排放;二是继续加强农业基础设施建设,推进农业结构和种植制度调整,选育抗逆品种,以加强农业生态建设;三是加强水资源管理与保护,进一步强化水利基础设施规划和建设;四是进一步完善森林生态系统建设,大力推进生态市、县和生态城市建设,健全林业有害生物检疫、测报和防虫服务体系,以加强森林和其他生态系统建设;五是研究和用好“排放权”特殊资源;六是采取加强气候变化相关科技工作的管理与协调,加强气候变化相关科研工作,加强气候变化领域科技人才建设,促进产业结构优化和升级,加强应对气候变化的节能减排科技成果的推广和转化,加大对气候变化科学研究与技术开发的资金投入等,以提高气候变化相关科技工作的水平和能力;七是发挥政府的推动作用,加强宣传、教育和培训工作,提高公众应对气候变化意识和水平。  相似文献   

3.
中国土壤有机碳库及其演变与应对气候变化   总被引:1,自引:0,他引:1  
通过综述和评价中国土壤,特别是农田土壤有机碳库(以下简称碳库)的现状与演变态势, 讨论其对我国应对气候变化的意义, 提出了我国土壤碳库及其演变与应对气候变化的基本国情是:1) 我国土壤背景碳储量较低且区域分布不均衡;2) 我国土壤固碳效应明显,未来固碳减排潜力显著;3) 技术和政策是实现和提高我国土壤碳汇、促进我国应对气候变化能力建设的重要途径。建议进一步加强对我国农田土壤固碳减排的研发投入, 完善农业应对气候变化的相关政策和鼓励措施体系,研究构建气候友好的新型农业,以期在提高和稳定农业生产力与应对气候变化能力上获得双赢。  相似文献   

4.
中国土壤有机碳库及其演变与应对气候变化   总被引:33,自引:0,他引:33  
 通过综述和评价中国土壤,特别是农田土壤有机碳库(以下简称碳库)的现状与演变态势, 讨论其对我国应对气候变化的意义, 提出了我国土壤碳库及其演变与应对气候变化的基本国情是:1) 我国土壤背景碳储量较低且区域分布不均衡;2) 我国土壤固碳效应明显,未来固碳减排潜力显著;3) 技术和政策是实现和提高我国土壤碳汇、促进我国应对气候变化能力建设的重要途径。建议进一步加强对我国农田土壤固碳减排的研发投入, 完善农业应对气候变化的相关政策和鼓励措施体系,研究构建气候友好的新型农业,以期在提高和稳定农业生产力与应对气候变化能力上获得双赢。  相似文献   

5.
伐木制品碳储量议题的谈判进展   总被引:2,自引:0,他引:2       下载免费PDF全文
伐木制品碳储量对森林生态系统和大气之间的碳平衡起着至关重要的作用,伐木制品替代化石燃料,以及延长产品使用寿命对于减缓温室气体的排放具有很大的潜力。因此,伐木制品的碳储量议题已被列为《联合国气候变化框架公约》谈判的重要议题,并且将成为今后林业议题谈判的重要内容之一。在参与林业议题谈判和分析相关谈判资料的基础上,对各主要谈判方的观点作了简要总结,指出了目前该议题谈判存在的主要问题,并指出了今后谈判和研究的主要方向以及我国谈判的建议,以期为我国今后的履约战略提供支持。  相似文献   

6.
江西生态优势明显,森林覆盖率居全国前列,研究植被生态系统碳汇价值是应对气候变化和生态文明建设的具体体现。基于森林资源清查资料,研究了2001—2016年江西省森林碳汇价值;基于卫星遥感数据反演获取植被生态系统净初级生产力(NPP),评估了2000—2016年江西各设区市(县)植被碳汇分布特征。结果表明:1)2016年江西省森林碳储量价值为980.30亿元,植被和森林碳汇价值均呈上升趋势。2)江西省植被碳汇价值增加率为4.55亿元/a,2016年约为823.53亿元,每公顷所创造的碳汇经济价值为4930.67元,比2000年增加了11%。3)2016年各设区市植被碳汇价值排名前三位的分别是赣州、吉安和上饶,排名后三位的是新余、鹰潭和萍乡,单位面积固碳价值排名前三位的为赣州、吉安和抚州,排名后三位的是南昌、九江和鹰潭,其排名与森林面积和森林覆盖率有较大关系。  相似文献   

7.
本文从水泥材料碳汇发生原理、碳化影响因素、混凝土水泥碳汇、砂浆水泥碳汇与水泥窑灰碳汇等方面,综述水泥材料整个生命周期碳汇的相关研究。众多研究表明,水泥材料的碳化过程受水泥的材料因素和环境因素影响较大;混凝土在在建筑使用阶段的碳汇量核算方法主要通过碳化深度定量表达,而在拆毁和回收利用阶段的碳汇核算方法缺乏;砂浆水泥和水泥窑灰的碳化速度要高于混凝土,但其碳汇核算方法仍未建立。今后的研究应侧重以下几个方面:继续加强水泥材料碳汇影响因素及相应碳化参数的研究,从生命周期角度系统建立完整的水泥材料碳汇核算方法体系;精确核算中国乃至全球水泥材料年碳吸收量、碳汇累积量,并分析水泥材料碳汇在碳失汇中的贡献比例;从生态学和气候变化视角阐述水泥材料碳汇对城市碳循环的影响。  相似文献   

8.
本文从水泥材料碳汇发生原理、碳化影响因素、混凝土水泥碳汇、砂浆水泥碳汇与水泥窑灰碳汇等方面,综述水泥材料整个生命周期碳汇的相关研究。众多研究表明,水泥材料的碳化过程受水泥的材料因素和环境因素影响较大;混凝土在在建筑使用阶段的碳汇量核算方法主要通过碳化深度定量表达,而在拆毁和回收利用阶段的碳汇核算方法缺乏;砂浆水泥和水泥窑灰的碳化速度要高于混凝土,但其碳汇核算方法仍未建立。今后的研究应侧重以下几个方面:继续加强水泥材料碳汇影响因素及相应碳化参数的研究,从生命周期角度系统建立完整的水泥材料碳汇核算方法体系;精确核算中国乃至全球水泥材料年碳吸收量、碳汇累积量,并分析水泥材料碳汇在碳失汇中的贡献比例;从生态学和气候变化视角阐述水泥材料碳汇对城市碳循环的影响。  相似文献   

9.
肖舜 《陕西气象》2014,(2):30-30
<正>近日,陕西省气象局与陕西省林业厅签署关于加强林业气象服务合作的协议,从五个方面深化合作。一是加强林业气象观测站点建设,在林区防火一些重点地段建设林区气象观测站,实现观测资料、预报预警信息共享。二是提高森林火险气象等级预报的时效性和精度,联合开展对森林火险预警、森林火灾监测等基础理论研究和预  相似文献   

10.
为了应对全球气候变化带来的挑战,2020年9月中国提出努力争取在2060年前实现碳中和。对此,生态系统固碳被寄予厚望;然而,生态学理论认为,成熟生态系统的碳输入输出趋于平衡,没有碳的净积累,也就没有碳汇功能,而未成熟的生态系统虽有碳的净积累并具有碳汇功能,但自然界任何未成熟生态系统从它建立的时候开始都在不断地向成熟生态系统演替,即任一生态系统演替的最终结果必然是碳输入输出达到平衡状态。由于森林生态系统碳库是陆地生态系统中最大的碳库,所以人们对其在碳中和上的贡献充满期待。本文以森林生态系统为例,分别考虑森林生态系统碳库的生物量碳库和土壤有机碳库,并基于全球最新研究成果,论证了森林生态系统土壤碳库积累过程具有长久的固碳功能,且不违背成熟生态系统碳输入输出趋于平衡的生态学理论,它能为实现碳中和目标做出贡献。  相似文献   

11.
Carbon storage and flow through forest ecosystems are major components of the global carbon cycle. The cycle of carbon is intimately coupled with the cycle of nitrogen and the flow of water through forests. The supply of water for tree growth is determined by climate and soil physical properties. The rate at which nitrogen mineralization occurs depends on climate and the type of carbon compounds with which the nitrogen is associated. Species composition, which is also affected by climate, can greatly influence the composition of carbon compounds and subsequently nitrogen availability. Climate change can therefore have a direct effect on forest ecosystem production and carbon storage through temperature and water limitations, and an indirect effect through the nitrogen cycle by affecting species composition. Model simulations of these interactions show that climate change initiates a complex set of direct and indirect responses that are sensitive to the exact nature of the project climate changes. We show results using four different climate-change projections for a location in northeastern Minnesota. Modeled forest responses to each of these climate projections is different indicating that uncertainties in the climate projections may be amplified further as a result of shifts in balance between positive and negative ecosystem feedbacks.  相似文献   

12.
Forests have an important role to play in climate change mitigation through carbon sequestration and wood supply. However, the lower albedo of mature forests compared to bare land implies that focusing only on GHG accounting may lead to biased estimates of forestry's total climatic impacts. An economic model with a high degree of detail of the Norwegian forestry and forest industries is used to simulate GHG fluxes and albedo impacts for the next decades. Albedo is incorporated in a carbon tax/subsidy scheme in the Norwegian forest sector using a partial, spatial equilibrium model. While a price of EU€100/tCO2e that targets GHG fluxes only results in reduced harvests, the same price including albedo leads to harvest levels that are five times higher in the first five years, with 39% of the national productive forest land base being cleared. The results suggest that policies that only consider GHG fluxes and ignore changes in albedo will not lead to an optimal use of the forest sector for climate change mitigation.

Policy relevance

Bare land reflects a larger share of incoming solar energy than dense forest and thus has higher albedo. Earlier research has suggested that changes in albedo caused by management of boreal forest may be as important as carbon fluxes for the forest's overall global warming impacts. The presented analysis is the first attempt to link albedo to national-scale forest climate policies. A policy with subsidies to forest owners that generate carbon sequestration and taxes levied on carbon emissions leads to a reduced forest harvest. However, including albedo in the policy alongside carbon fluxes yields very different results, causing initial harvest levels to increase substantially. The inclusion of albedo impacts will make harvests more beneficial for climate change mitigation as compared to a carbon-only policy. Hence, it is likely that carbon policies that ignore albedo will not lead to optimal forest management for climate change mitigation.  相似文献   

13.
The paper discusses the development of economic techniques for dealing with uncertainties in economic analysis of planting trees to mitigate climatic change. In consideration of uncertainty, time preference and intergenerational equity, the traditional cost-benefit analysis framework is challenged with regard to the discounting/non-discounting of carbon uptake benefits, and because it usually uses a constant and positive discount rate. We investigate the influence of various discounting protocols on the outputs of economic analysis. The idea of using the declining discount rate is also considered. Several numerical examples dealing with the analysis of afforestation for carbon sequestration in Scotland and Ukraine are provided. We show that the choice of discounting protocols have a considerable influence on the results of economic analysis, and therefore, on the decision-making processes related to climate change mitigation strategies. The paper concludes with some innovative insights on accounting for uncertainties and time preference in tackling climate change through forestry, several climate policy implications of dealing with uncertainties, and a brief discussion of what the use of different discounting protocols might imply for decision making.  相似文献   

14.
Previous research has identified the importance of the role of land cover in the global carbon cycle. In particular, forests have been identified as a significant carbon sink that can mitigate the rate of global climate change. Policy makers are faced with complex and difficult challenges in getting timely and useful information in monitoring global forest resources. Recent advances in the tools and methods of forest carbon accounting have produced new, innovative approaches to forest-based carbon inventories. But it is important as new tools are developed that scientists understand the needs of policy makers and that policy makers understand the capabilities and limitations of forest inventory methods. This paper explores four different policy applications that rely, or could benefit from, national carbon inventories. The goal is to help build a bridge between the communities of climate policy makers and scientists specialized in forest carbon inventories. To this end, we pursue three specific objectives: First we provide an overview for policy makers about approaches to forest carbon inventories, paying particular attention to the contributions of remote sensing technologies. Second, we outline the issues particularly relevant to forest inventory scientists who are interested in responding to public policy needs. We then discuss the tradeoffs between information cost, accuracy, precision, transparency and timeliness that need to be balanced in long-term monitoring of forest carbon. Finally, the article concludes with a series of observations and recommendations for the implementation of forest carbon inventories as increasingly central components of global climate change policy.  相似文献   

15.
Summary A suite of simulations with the HadCM3LC coupled climate-carbon cycle model is used to examine the various forcings and feedbacks involved in the simulated precipitation decrease and forest dieback. Rising atmospheric CO2 is found to contribute 20% to the precipitation reduction through the physiological forcing of stomatal closure, with 80% of the reduction being seen when stomatal closure was excluded and only radiative forcing by CO2 was included. The forest dieback exerts two positive feedbacks on the precipitation reduction; a biogeophysical feedback through reduced forest cover suppressing local evaporative water recycling, and a biogeochemical feedback through the release of CO2 contributing to an accelerated global warming. The precipitation reduction is enhanced by 20% by the biogeophysical feedback, and 5% by the carbon cycle feedback from the forest dieback. This analysis helps to explain why the Amazonian precipitation reduction simulated by HadCM3LC is more extreme than that simulated in other GCMs; in the fully-coupled, climate-carbon cycle simulation, approximately half of the precipitation reduction in Amazonia is attributable to a combination of physiological forcing and biogeophysical and global carbon cycle feedbacks, which are generally not included in other GCM simulations of future climate change. The analysis also demonstrates the potential contribution of regional-scale climate and ecosystem change to uncertainties in global CO2 and climate change projections. Moreover, the importance of feedbacks suggests that a human-induced increase in forest vulnerability to climate change may have implications for regional and global scale climate sensitivity.  相似文献   

16.
Economics of climate change mitigation forest policy scenarios for Ukraine   总被引:1,自引:0,他引:1  
Abstract

This article reveals the contribution of woodland expansion in Ukraine to climate change mitigation policies. The opportunities for climate change mitigation of three policy scenarios: (1) carbon storage in forests, (2) carbon storage and additional wood-for-fuel substitution, and (3) carbon storage with additional sink policy for wood products, are investigated by using a simulation technique, in combination with cost—benefit analysis. The article concludes that the Ukraine's forests and their expansion offer a low-cost opportunity for carbon sequestration. Important factors that influence the results are the discount rate and the time horizon considered in the models. The findings provide evidence that the storage climate change mitigation forest policy scenario is most viable for the country, under the assumptions considered in this research.  相似文献   

17.
Policy initiatives in India, such as the Social Forestry Program and later the Joint Forest Management, were introduced for their co-benefits, including forest protection, employment opportunities, and added income for communities living in and around the forests. The evolution of these forest policies is critically reviewed. It is argued that India is perfectly positioned to benefit from climate change mitigation efforts, due to a rich, albeit chequered, history in forest management. National forestry policies are examined to assess how they can complement international climate change mitigation instruments, such as the Clean Development Mechanism (CDM) and the more recent Reduced Emissions from Deforestation and Forest Degradation (REDD or REDD+ with conservation, sustainable management of forests, and enhancement of forest carbon stocks) and aid national sustainable development objectives. There is a need to heed the experiences from India's evolving forest policies, particularly those concerning land tenure and resource rights, which lack specificity within international mechanisms. The active engagement of rural communities must be integral to any programmes that make any claim to development and to environmental integrity as a whole.

Policy relevance

India's forestry programmes are examined for their effectiveness in informing international initiatives such as the CDM and REDD+. Forestry policies in India can evolve to complement international climate mitigation tools. By examining current and historical forest legislation, and their subsequent impacts, it is shown how communities can sustain their system of forest management and retain/obtain rights to land and resources under the CDM and REDD+. Looking for such synergies within existing national policies to implement newer international initiatives can greatly facilitate and increase the momentum of global environmental change.  相似文献   

18.
The future forests of eastern North America will be shaped by at least three broad drivers: (i) vegetation change and natural disturbance patterns associated with the protracted recovery following colonial era land use, (ii) a changing climate, and (iii) a land-use regime that consists of geographically variable rates and intensities of forest harvesting, clearing for development, and land protection. We evaluated the aggregate and relative importance of these factors for the future forests of New England, USA by simulating a continuation of the recent trends in these drivers for fifty-years, nominally spanning 2010 to 2060. The models explicitly incorporate the modern distribution of tree species and the geographical variation in climate and land-use change. Using a cellular land-cover change model in combination with a physiologically-based forest landscape model, we conducted a factorial simulation experiment to assess changes in aboveground carbon (AGC) and forest composition. In the control scenario that simulates a hypothetical absence of any future land use or future climate change, the simulated landscape experienced large increases in average AGC—an increase of 53% from 2010 to 2060 (from 4.2 to 6.3 kg m−2). By 2060, climate change increased AGC stores by 8% relative to the control while the land-use regime reduced AGC by 16%. Among land uses, timber harvesting had a larger effect on AGC storage and changes in tree composition than did forest conversion to non-forest uses, with the most pronounced impacts observed on private corporate-owned land in northern New England. Our results demonstrate a large difference between the landscape’s potential to store carbon and the landscape’s current trajectory, assuming a continuation of the modern land-use regime. They also reveal aspects of the land-use regime that will have a disproportionate impact on the ability of the landscape to store carbon in the future, such as harvest regimes on corporate-owned lands. This information will help policy-makers and land managers evaluate trade-offs between commodity production and mitigating climate change through forest carbon storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号