首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 567 毫秒
1.
在热量平衡基础上,综合彭曼公式和布德科公式的计算理论,推导出一个计算可能蒸发的气候学实用方法。在郑州地区的试验计算取得了令人满意的满意。  相似文献   

2.
乌兰布和沙漠可能蒸散的研究   总被引:1,自引:0,他引:1  
在测定该区2000~2005年气象因子的基础上,分析研究了乌兰布和沙漠沙地可能蒸散的月变化特点,比较分析了应用Penman方程、Thornthwaite公式和Holdridge 3种方法计算的可能蒸散。结果指出Penman方程计算的可能蒸散和水面蒸发量具有显著的直线性相关,可应用Penman方程计算所得的可能蒸散评价该区的水分蒸发特点。研究指出可能蒸散月变化与月平均温度的变化基本一致,全年最大的月份是7~8月,全年累计可能蒸散量为3 041 mm。  相似文献   

3.
最大可能蒸发量的计算分析   总被引:4,自引:2,他引:4  
金龙  罗莹 《气象科学》1989,9(2):217-222
本文通过对彭门(Penman)原式的“干燥力”计算式是—Ea、几种主要的Ea修正式以及旬太阳总辐射气候学计算方法的研究,进行了旬最大可能蒸发量的计算,得到了较好的结果。  相似文献   

4.
三种计算可能蒸发方法的比较   总被引:1,自引:1,他引:1  
裴步祥  邹耀芳 《气象》1986,12(7):26-30
彭曼(Penman)、桑斯维特(Thor-nthwaite)和布德科(Будыко)计算可能蒸发的方法,是当前国内外普遍采用的三种方法。本文根据这三种计算方法的公式,对它们的精确度、计算复杂性等方面得出了比较结果。  相似文献   

5.
叶笃正  徐淑英 《气象学报》1956,27(4):383-385
在“黄河流域降水”的研究中作者们曾采用雷雨模型计算了黄河流域局地可能最大降雨强度。在当时因为缺乏积雨云中水量分布的观测,我们假定2/3的水量集中于1/3的云中,同时假定有50%的水量在最大上升气流的范围内流出。现在已经有了水分分布的观测,同时还有了绝热凝结水分与实际含量比值的观测,因此我们可以修正过  相似文献   

6.
詹道江  邹进上 《气象学报》1986,44(4):473-481
我国的暴雨洪水大、人口众、土坝多。为了保障人民生命财产和工农业的安全,许多大型、重要的中小型水库多采用可能最大暴雨洪水作为设计、校核的标准。在水文与气象人员的协作下,我国近十年来的可能最大暴雨与洪水计算方法得到一定的发展,提出了具有中国特色的方法、论文和一些专著,并开始了国际交流。本文综述这方面的进展并提出了几点看法。  相似文献   

7.
可能最大热带气旋中心气压的计算值与热带气旋上界面的位势高度、气温或海面温度的取值大小均呈近似线性关系,但对位势高度、海面温度取值的反应较为平缓,对气温的取值最为敏感。在上述研究的基础上,讨论了浙江北部沿海海面可能最大热带气旋中心气压大气条件的确定,并计算了该地区的可能最大热带气旋中心气压,取得的结果可作为当地有关工程可行性研究、工程设计等的参考依据。  相似文献   

8.
计算了建筑物合理日照间距系数以及各方位、不同时间的墙面日照时数,可能直接辐射等,为建筑采光、采暖设计提供了有益的参考。  相似文献   

9.
本文利用以乌克拉英采夫法确定的可能太阳直接辐射日平均通量密度资料,着重分析了关于使用以卡斯特洛夫公式为基础的理论方法的有关问题,并研究用迭代法求解的卡斯特洛夫系数的变化特征;寻找其与水汽压的经验关系;检验其对理论式的灵敏度和反演误差。证实利用地面水汽压资料可相当精确地计算出各地的可能太阳直接辐射日平均通量密度。在此基础上详细地讨论了可能太阳直接辐射的时空分布特点。  相似文献   

10.
葉篤正  楊大昇 《气象学报》1955,26(4):329-331
把大气和地球看成一个孤立的系统,则此系统之总角动量不改变。从冬到夏地球本身的角动量增加,则同一时期大气的总角动量减少,但是低层大气(从地面到800毫巴)的平均西风环流夏季反而强於冬季,因此作者认为:从冬到夏近地面西风环流的这种加强,可能就是同一期间地转角速加快的原因;同时也可能是夏季大气角动量消耗率较高的原因。  相似文献   

11.
基于1981—2021年北京地区6个气象站的逐日最大冻土深度、平均气温、平均地表温度及5、10、15、20、40、80 cm地温等资料,分析了近40年北京地区最大冻土深度的时空分布特征及其与气温和地温的关系。结果表明:北京地区最大冻土深度总体呈变浅趋势,气候倾向率为-2.3 cm/10 a,各站点最大冻土深度变浅趋势从西到东呈逐渐减弱趋势。北京地区最大冻土深度与40、80 cm地温相关性最好,与地表温度相关性较差。选取2021至2022年北京地区冻土对比试验数据,评估测温式冻土自动观测仪观测精度,发现仪器安装至少一个冻融周期后与冻土人工观测吻合度更好,测温式冻土自动观测仪的观测精度与仪器安装位置的地下岩层、土质分布密切相关,需要在仪器稳定运行后根据当地实际优化算法和冻融阈值。  相似文献   

12.
青藏高原多年冻土区典型下垫面冻融过程作用分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用青藏高原腹地安多站土壤观测资料,根据10cm土壤日最高和最低温度将冻土分为融化过程、完全融化、冻结过程和完全冻结四个阶段,并结合感热通量、积雪深度、相对湿度和降水资料定性的探讨了冻融过程对地气热量、水分交换的影响。结果表明:各层土壤在东亚季风爆发前期由上至下完成融化过程,10月中旬~12月上旬完成冻结过程,融化期普遍长于冻结期。土壤湿度大值区在时间上集中在高原雨季,空间上10cm深度以上为湿度大值区,而且上层土壤的温度梯度要明显大于下层。在融化阶段整层土壤的温度长期保持0℃的等温相变现象,此时,表层土壤温度日变化幅度为全年最大,最高日变幅达22.5℃。安多站地面除12月个别天数和1月上旬是冷源外,全年为地面热源,近地面感热通量从1月开始增大,到6月上旬达到峰值,之后逐渐减小。同时,感热通量的变化对相对湿度、降水和积雪的变化较为敏感。   相似文献   

13.
利用大同市所辖8个站1962—2012年地面气象观测记录中的冻土资料,采用线性倾向估计、累积距平等方法,分析大同市土壤开始冻结期、完全解冻期、冻结期及最大冻土深度的变化特征及其影响因素。结果发现:51年中大同市冻土主要表现为最大冻土深度减小, 开始冻结期推迟,解冻期提前, 冻结持续期缩短的总体变化趋势,冻土除了受气温的影响外,局地因素对最大冻土深度的影响较大。  相似文献   

14.
探讨石家庄冻土变化特征与气候因子的关系,以期作好土壤冻融预测.利用石家庄地区5个观测站1981—2010年逐日地温、降水量、蒸发量和冻土观测数据,采用线性趋势、完全相关系数和多元回归方法,分析讨论了该地区冻土变化特征与地温、降水量、蒸发量的变化关系.结果表明:石家庄地区土壤表面始冻期呈现明显推迟趋势,土壤表面解冻期呈现明显提前趋势,其中,中部地区始冻期推迟,解冻期提前趋势最为明显;11—12月平均地面最低温度与土壤表面始冻期正相关明显,2—3月平均地面最低温度与土壤表面解冻期负相关明显;秋季降水量和蒸发量对土壤表面始冻期推迟,冬季降水量和蒸发量对土壤表面解冻期提前影响较小.  相似文献   

15.
In this paper, by using the sounding data collected in LOPEX05, we have analyzed the vertical atmospheric structure and boundary layer characteristics of temperature and humidity in the late summer over the east Gansu loess plateau. The results show that the bottom of the stratosphere is at about 16 500 m and varies between 14 000 m and 18 000 m above the ground. The center of the westerly jet is located between 8300 m and 14 300 m above the ground and its direction moves between 260° and 305°. There is an ...  相似文献   

16.
晁华  徐红  王当  王小桃  朱玲  顾正强 《气象科技》2017,45(1):116-121
利用辽宁省61个气象站1964—2013年的冻土观测资料,采用线性回归、相关性分析、不同气候期对比等方法,结合ArcGIS分析了辽宁省冻土的空间和时间变化特征。结果表明:辽宁省冻土随纬度呈带状分布;土壤冻结具有明显的季节变化特征,冻结期在10月至翌年5月,冬末春初冻结的面积和深度达到最大值;冻结日自北向南逐渐推迟,消融日则相反;在全球变暖背景下,冻土深度随温度的上升而减小;大部分地区年平均气温和地表温度与最大冻土深度呈显著负相关,是影响冻土深度的重要因素;从各气候期100cm等深度线也可以明显看出最大冻土深度呈逐渐减小趋势。  相似文献   

17.
利用1985—2021年呼伦贝尔市15个国家气象站各层地温、第一冻土层下限、最大冻土深度资料,研究呼伦贝尔市冻土气候演变特征,同时采用重标极差(R/S)和非周期循环分析,统计最大冻土深度等气象要素时间序列的Hurst指数、分维数和非周期循环的平均循环长度,分析最大冻土深度等气象要素变化趋势和记忆周期。研究表明:(1)0cm地温、40cm平均地温、80cm平均地温都呈现出增大趋势,且0cm地温增大趋势最显著,特别是0cm地温最小值增大更加明显。(2)冻结持续日数呈缓慢减小趋势,其中中部偏北海拔超过600 m山区持续时间最长,西南部和东南部地区持续时间最短。(3)7月中旬冻土在北部地区开始,9月开始到10月下旬向西南和东南地区扩展,次年5月上旬至6月下旬自西南和东南地区向北部地区开始消失。(4)最大冻土深度呈现逐年减小趋势,突变年份出现在1988年,最大冻土深度在7-9月最浅,次年2-4月最深,10月-次年1月是最大冻土深度不断加深的过程,5-6月是最大冻土深度显著减小的时段,其中最大冻土深度最大值出现在西部偏南地区。(5)R/S和非周期循环分析表明,冻结持续日数和最大冻土深度未来减小趋势仍将持续,持续时间分别为10 a和8 a;0cm地温、40cm平均地温、80cm平均地温未来增大趋势仍将持续,持续时间都为12 a。  相似文献   

18.
王秀琴  卢新玉  王金风 《气象科技》2013,41(6):1068-1072
基于新疆昌吉州5个国家气象站2008—2010年积雪深度大于等于0 cm的实测地面温度与雪面温度,对0 cm地面温度(含最高、最低)、雪面温度(含最高、最低)及云量、日照时数、雪深进行统计分析,找出不同积雪深度下地面温度与雪面温度的关系,并以阜康市天池气象站2011年所有积雪日数据对关系模型作检验。结果显示:地面温度与雪面温度的关系有3个雪深分层:5 cm以下、6~40 cm和40 cm以上,积雪深度为0~5 cm时,地面温度与雪面温度差值很小,受雪深及天气条件影响明显,雪深6~40 cm,主要受雪深影响,雪深超过40 cm,地面温度趋于定值。  相似文献   

19.
Supercooled drizzle (freezing drizzle) was observed at Inuvik, N.W.T., Canada (68°22′N, 133°42′W) on December 20, 21 and 27, 1995. Meteorological conditions in which the supercooled drizzle could form under low temperatures (colder than −20°C) in the mid-winter season of the Canadian Arctic were examined from the sounding data and data measured by a passive microwave radiometer at ground level. The following results were obtained. (1) Supercooled drizzle fell to the ground with ice pellets and frozen drops on snow crystals. (2) The maximum size of supercooled drizzle particles increased as the depth of cloud layer saturated with respect to water increased. (3) Because a layer of air temperature higher than 0°C was not detected from the sounding data at Inuvik, melting of snow particles was impossible. It was concluded, therefore, that supercooled drizzle was formed by the condensation–coalescence process below freezing temperature.  相似文献   

20.
The influence of the predicted climate warming on soil frost conditions in Finland was studied using a climate scenario based on a Hadley Centre (U.K.) global ocean-atmosphere general circulation model (HadCM2) run. HadCM2 results were dynamically downscaled to the regional level using the regional climate model at the Rossby Centre (Sweden). The future period this study focuses on is the end of the 21st century. The study was limited to ground surface conditions in which snow has been removed. The predicted air temperature rise was interpreted in terms of changes in soil frost conditions using an empirical dependence that was found between measured soil frost depths and the sum of daily mean air temperatures calculated from the beginning of the freezing period. On average the annual maximum soil frost depth will decrease in southern and central Finland from the present approx. 100–150 cm by about 50 cm. In northern Finland the change will be from depths of about 200–300 cm to about 100–200 cm depending on station. The annual maximum soil frost depth in the future would thus be about the same in northern Finland as it is in the current climate in southern Finland. In southern Finland after about 100 years the ground will seldom be frozen in December and even in January there will be no soil frost in about half of the years. In Central and northern Finland the probability of completely unfrozen ground in December–March is very small, even in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号