首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
1998年夏季青藏高原东南部降水30~60 d低频振荡特征   总被引:1,自引:0,他引:1  
刘炜  周顺武  智海 《气象》2014,40(5):530-540
根据地面观测站的逐日降水资料及NCEP/NCAR逐日再分析资料,分析了1998年夏季青藏高原东南部地区的低频降水特征,并重点讨论了30~60 d低频降水正、负位相期间相关要素场低频分量的异常分布及传播特征。结果表明:(1)1998年高原东南部降水存在10~20、20~30以及30~60 d周期的低频振荡,其中30~60 d振荡的正(负)位相基本对应着降水的盛(间歇)期。(2)在降水正(负)位相期间,高原南侧存在一个低频气旋(反气旋),而日本海上空维持着一个异常低频反气旋(气旋),受高原南侧低频气旋(反气旋)东北侧的偏南(北)气流以及日本海上空低频反气旋(气旋)西南侧的偏南(北)气流的共同影响,高原东南部为明显的低频水汽辐合(散)区。(3)在低频降水正位相期间,高原地区经孟加拉湾至中南半岛到南海均为低频热源区;负位相,热源、汇低频分量的分布与正位相基本相反。(4)1998年夏季存在从西太平洋经长江中下游西传至高原地区的30~60 d整层积分水汽通量辐合(散)和100 hPa低频辐散(合),且西传至高原东南部时基本与高原东南部30~60 d低频降水的正(负)位相对应。  相似文献   

2.
用2001年和2003年NCEP/NCAR再分析资料,计算了亚洲季风区两年逐日的大气热源汇〈Q1〉,再用谐波分析方法对〈Q1〉作带通滤波, 得到了准30~70 d的〈Q1〉低频分量,并分析了两年夏季大气热源汇和其低频振荡变化特征的差异,然后研究了一些“关键”区〈Q1〉低频分量的变化与我国降水的关系。结果表明:在2001年和2003年夏季的亚洲季风区,一方面应该有这样一种过程,大气热源汇低频分量经向和纬向传播的差异→江淮流域旱涝期东亚地区大气热源汇低频分量南北配置的差异→东亚地区大气热源汇本身的南北分布不同。另一方面,夏季的5~8月期间,高原中南侧有较强的低频热源 (热汇) 时,可导致其后期江淮流域降水偏多 (少);中国南海的作用则正好相反,南海有较强的低频热源 (热汇) 时,不仅可导致其后期江淮流域降水偏少 (多),还可导致其后期青藏高原东部降水偏少 (多)。因此,夏季亚洲季风区热源、热汇季节内变化特征的不同可导致我国江淮流域异常的旱涝发生。  相似文献   

3.
大气热源30~60天振荡与华南6月旱涝的关系   总被引:3,自引:1,他引:2       下载免费PDF全文
利用1958—2000年NCEP/NCAR再分析资料和华南测站降水资料,分析了大气热源30~60 d振荡对华南6月旱涝的影响。结果表明,在涝(旱)年对流层低层,南海至日本东南面的西北太平洋(WNP)是一个异常的低频反气旋(气旋),伴随有异常的低频热汇(热源)区,华南至日本南部存在一个异常气旋(反气旋),对应于异常的低频热源(热汇)区,华南地区低层异常辐合(辐散);平均而言,旱年华南5—6月30~60 d振荡的位相演变要比涝年的偏晚约7~11天;涝年,低频热源和气旋从南海南部北传和从西太平洋暖池区西北传,以及从140°E附近WNP的西传都十分明显,它们对华南6月降水偏多有非常重要的影响。而旱年南海及邻近区域的低频热源和气旋北传较涝年偏晚,WNP上低频热源的西伸不明显。前期南海低频热源推进的迟早以及热带WNP上的低频热源是否西传对华南6月的降水有显著影响。  相似文献   

4.
2010年华南前汛期低频水汽输送对低频降水的影响   总被引:1,自引:0,他引:1  
利用国家气象信息中心提供的华南85站1961—2010年的逐日降水资料及2010年NCEP/NCAR逐日再分析资料,研究了2010年华南前汛期降水的低频特征及其与低频水汽输送的关系,揭示了低频降水的低频水汽输送源地和通道。2010年华南前汛期降水呈显著10~20 d和30~60 d的低频振荡,两个低频分量峰(谷)值位相叠加,对应降水偏多(中断);反位相叠加,对应降水偏弱。水汽通量的10~20 d低频分量明显强于30~60 d分量。影响华南10~20 d低频降水的低频水汽输送源地主要包括30 °S附近的南印度洋、苏门答腊岛及加里曼丹岛之间地带的西南源地、赤道中太平洋区域的东南源地;与之相应有西南和东南两个低频水汽输送通道。可利用水汽源地的低频水汽输异常环流特征提前6 d预测10~20 d低频降水。   相似文献   

5.
利用河南119站的降水观测资料以及NCEP/NCAR各层高度场、风场和垂直速度场的再分析资料,研究2011年9月在河南发生的一次持续的区域性连阴雨过程。对降水进行的墨西哥帽小波分析发现,降水存在着低频特征。通过对造成低频降水的高度场和风场资料滤波计算,分析了造成降水的低频环流特征,结果表明:2011年9月河南秋季持续性降水低频振荡最主要的周期是32 d左右;低频降水的周期分为4个位相,降水从低频谷值和峰值之间的过渡位相开始,在峰值位相达到最大。低频环流场的配置在低频降水的谷值位相和峰值位相有着显著的差异,环流场的高低层配置从不利于对流发展转为有利于对流发展;同时低层水汽输送在过渡位相开始逐渐加强。降水的发生在850 hPa上主要是与低频正涡度的分布相一致,低频正涡度有着明显的波列变化及北跳;500 hPa、200 hPa上的低频负涡度变化和降水变化相一致。降水的峰值(谷值)位相散度场的高低空配置主要为低层辐合(辐散)、中高层辐散(辐合),有利于(不利于)对流的发展。  相似文献   

6.
利用1954—2005年中国740站逐日降水资料和NCEP/NCAR再分析资料,分析江淮梅雨期降水的南北反位相分布(Anti-Phase Distribution:APD)和大气准双周振荡(Qusi-Biweekly Oscillation:QBWO)之间的关系,诊断结果表明:(1)1954—2005年江淮梅雨APD共有16年较为显著。从1990年代开始,梅雨APD显著增强,并且表现出显著的2年和4~6年振荡周期。在降水较多的区域,降水的准双周振荡往往也较强。(2)梅雨期降水APD和中国东部地区降水的南北变动同属一个位相,中国东部地区的南涝北旱或者南旱北涝在很大程度上可以由江淮地区降水的分布类型来说明。(3)"南旱北涝"年,准双周滤波的整层水汽通量能够传播到30°N以北,同时存在强烈的水汽通量辐合从中高纬度向南传播到江淮流域。而在"南涝北旱"年,准双周的水汽输送所能到达的纬度明显偏南,来自中高纬度向南传播的水汽通量辐合也不显著。(4)"南旱北涝"年降水正位相,西北太平洋副热带高压(简称西太副高)脊线位于22°N以北,850 hPa低频反气旋的位置相对于"南涝北旱"年偏北,调节西太副高进入南海位置也偏北。南海和江淮上空的准双周垂直速度异常位置整体偏北,第3位相的上升运动和第7位相的下沉运动都位于30°N以北,南海的垂直速度异常也主要位于南海北部,而在"南涝北旱"年,准双周垂直速度异常的分布偏南。  相似文献   

7.
为了研究青藏高原夏季降水的低频振荡特征,利用1978-2017年高原地区62个气象站日降水资料和ERA5高分辨率逐日再分析资料,采用集合经验模态分解(EEMD)、 Lanczos滤波以及合成分析方法,对青藏高原夏季旱涝年降水的低频振荡特征、气象要素场变化及环流特征进行了深入分析,揭示了高原地区旱涝年降水低频振荡周期特征、环流特征以及低频风场、涡度场等传播特点。结果表明:(1)高原夏季降水存在10~20天的振荡周期;旱涝年的周期频率不同,涝年振荡频率明显高于旱年;涝年显著的振荡为10~20天和30天以上的振荡,而旱年主要以10~20天的振荡为主。(2)涝年在低频降水强位相,高空低频气旋控制高原主体,高空辐散,低空辐合,来自孟加拉湾偏南风的水汽供应充足,低频扰动强,利于降水发生,自西向东存在低频反气旋-低频气旋-低频反气旋的异常环流分布;反之在低频降水弱位相,高空低频反气旋控制高原主体,高空辐合,低空辐散,暖湿的偏南气流较弱,低频扰动偏弱,不利于降水发生。旱年配置有相似的特征,但低频反气旋-低频气旋-低频反气旋的环流形势不明显,整体上振荡强度较涝年偏弱,低频要素场强度也偏弱。(3)低频波动...  相似文献   

8.
2007年淮河强降水时期低频环流特征   总被引:2,自引:1,他引:1  
李勇  周兵  金荣花 《气象学报》2010,68(5):740-747
利用NCEP/NCAR再分析资料以及中国气象台站降水资料,研究了2007年夏季淮河流域强降水的低频振荡及其环流特征。结果表明,2007年夏季淮河流域强降水低频振荡的主要周期是10 25天。淮河流域降水强弱与对应低频周期存在联系,降水主要发生在低频周期的正位相时期,而在负位相时期结束或明显减弱。降水的低频变化一方面与副热带高压和南亚高压的低频变化有关,另一方面还受到中高纬度冷空气低频变化的影响。在低频周期的峰值位相,对流层高层出现的低频反气旋使南亚高压偏东,脊线偏北,并有利于西太平洋副热带高压向更西、更北的方向发展,整个对流层垂直方向上有低频的上升运动。中高纬地区出现大片正位势涡度,冷空气的低频活动显著偏强,南下侵入到中国淮河流域的冷空气较多,形成有利于淮河流域强降水的环流场。相反,在低频周期的谷值位相,对流层高层出现的低频气旋使南亚高压偏西,脊线偏南,不利于西太平洋副热带高压向更西、更北的方向发展,整个对流层垂直方向上有低频的下沉运动。高纬度冷空气的低频活动偏弱,南下侵入到中国淮河流域的冷空气也较少,最终形成不利于淮河流域强降水的环流场。  相似文献   

9.
北半球夏季风区大气视热源和视水汽汇的低频振荡   总被引:3,自引:1,他引:3  
利用1986年5-9月ECMWF/WMO资料计算非洲季风区、印度季风区、南海季风区和副热季风区的视热源和视水汽汇。结果表明非洲季风区和印度季风区Q1、Q2的准40天周期显著;南海季风区准双周振荡明显;副热带季风区盛行8天左右的周期;准40天周期振荡也是南海季风区和副热带季风区的重要信号,印度季风区Q1,Q2的准40天周期振荡比其他季风区的更为显著;非洲季风区Q1振荡位相超前于Q2振荡位相,其他季风  相似文献   

10.
湖南涝年主汛期降水低频振荡特征分析   总被引:1,自引:0,他引:1  
本文基于1986—2015年湖南逐日降水数据以及同期NCEP/NCAR再分析资料,分析旱涝年主汛期(5—7月)降水低频振荡特征,并利用位相合成方法研究涝年主汛期20~50 d低频环流演变特征。结果发现,湖南地区20~50 d和10~20 d的低频降水方差贡献比都具有南高北低的分布特征,10~20 d的低频振荡在旱涝年中皆较普遍存在,而20~50 d的低频振荡只在涝年普遍存在,20~50 d低频振荡对涝年有一定的指示意义。对涝年主汛期20~50 d低频降水进行位相合成发现,在活跃位相(中断位相),夏季南亚高压和西太平洋副热带高压(简称西太副高)纬向异常接近或者重叠(分离),湖南地区降水偏多(偏少),且两个高压的强度、范围、以及脊线位置和湖南地区主汛期降水关系较密切。南海反气旋(气旋)、河套地区槽(脊)系统以及湖南地区的垂直速度和比湿配合度高,且随位相变化存在明显的周期振荡,其中南海反气旋(气旋)和河套地区槽脊系统配置与湖南低频降水有着高度的时间一致性,湖南地区的低频垂直速度和低频比湿较低频降水有一个位相的超前滞后关系。此外,随着位相的演变,低频南北风高值区皆有明显的北传特征。  相似文献   

11.
本文使用美国NCAR—NCEP再分析的逐日资料,研究了1998年夏季青藏高原降水特征及大气准45d低频振荡(LFO)对长江流域低频降水的影响。研究表明,6月19日左右青藏高原雨季开始,青藏高原是水汽输送的汇区,青藏高原影响了我国东部的降水天气过程,使长江流域降水不均匀;青藏高原的大气低频振荡对东部地区低频降水也产生了影响,使低频降水带在青藏高原的东坡出现不连续现象。  相似文献   

12.
利用NCEP/NCAR再分析资料和中国地面观测站的逐日降水资料,研究了2006年夏季中国川渝地区的伏旱与亚洲地区大气低频振荡的联系.结果表明,2006年夏季中国川渝地区降水低频振荡的主要周期约为60 d;在川渝严重干旱期的7月下旬至8月上旬,经向上由于川渝地区上空低频热汇、广西和海南及其以西地区上空低频热源的影响,在1...  相似文献   

13.
Temporal and spatial evolution characteristics of the 30-60 day oscillation (intraseasonal oscillation, ISO) of summer rainfall in China and the effects of East Asian monsoon on the rainfall ISO are analyzed in this paper. Results show that the annual and decadal variations of the oscillation exist between 1960 and 2008, and the intensity is weakest in the late 1970s and early 1980s. In the typical strong years of the rainfall ISO obtained from empirical orthogonal functions (EOF mode 1), an anticyclone is in northwestern Pacific and a cyclone is in the east of China. In the typical weak years, the wind ISO is much weaker. The low-frequency zonal wind and water vapor transport from the low latitudes to mid-latitudes in the typical strong years, and the oscillation strength of diabatic heating is much stronger than that in the weak years of the rainfall ISO. The anomaly characteristics of the rainfall ISO show anti-phases between the Yangtze River basin and south of China. As for the typical strong years of the rainfall ISO in the Yangtze River basin (EOF mode 2), the main oscillation center of water vapor is in the east of China (20-30°N, 110-130°E). In the peak (break) phase of the rainfall oscillation, a low-frequency cyclone (anticyclone) is in the Yangtze River basin and an anticyclone (cyclone) is near Taiwan Island. In addition, the peak rainfall corresponds to the heat source in the Yangtze River basin and the heat sink in the Qinghai-Tibet Plateau. As for the typical strong years of the rainfall ISO in the south of China, the main oscillation center of water vapor is south of 20°N. In the peak (break) phase of the rainfall ISO, a low-frequency cyclone (anticyclone) is in the south of China and an anticyclone (cyclone) is in the Philippines. The peak rainfall corresponds to the heat source in the south of China and the South China Sea, and the heat sink in the west of Indochina.  相似文献   

14.
淮河流域汛期暴雨与西太平洋海温关系   总被引:1,自引:0,他引:1  
利用淮河流域172测站1960—2009年逐日气象资料和全球海温资料,通过对淮河流域汛期暴雨与前期西太平洋海温的相关分析来研究海温的变化对淮河流域汛期暴雨的影响。选取西太平洋海域(158°~170°E,8°~14°N)作为关键海区,前一年5—6月作为关键时段,通过分析发现海温偏低(高)年,淮河流域的绝大部分地区的暴雨量减少(增加),淮河流域东北部呈现与其他地区反相的变化特征;在暴雨偏多(少)年,对应的前一年5—6月关键海区正好是海温偏高(低)。正是由于西太平洋关键海区持续的海温异常引起了次年汛期大气环流的异常,导致了淮河流域汛期暴雨的异常,这正是海温与暴雨具有很好相关的内在原因。  相似文献   

15.
贾燕  管兆勇 《大气科学》2010,34(4):691-702
利用1978~2007年NCEP/NCAR再分析资料和地面观测站降水资料, 研究了夏季江淮流域降水多寡与30~60天振荡 (ISO) 强度年际变化的联系。结果表明: 江淮流域夏季降水异常与台湾海峡地区及西北太平洋低频能量变化相关显著。定义了ISO强度指数, 对ISO强度指数高低年夏季低频降水以及低频环流的位相合成表明: 高指数年主要通过存在于南海—西北太平洋地区的低频气旋、 反气旋系统的交替活动来影响副热带高压的进退, 从而引起江淮流域夏季降水异常; 低指数年江淮流域夏季降水主要受西太平洋副热带高压位置及强度变化的影响, 降水异常区主要位于江南地区。进一步研究表明, 非30~60天低频降水扰动与低频振荡强度也有很好的相关。低频环流对双周以及天气时间尺度环流变化可能存在调制作用, 这种作用对江淮流域夏季降水的年际异常起到非常重要的作用。  相似文献   

16.
基于低频振荡特征的夏季江淮持续性降水延伸期预报方法   总被引:7,自引:1,他引:6  
陈官军  魏凤英 《大气科学》2012,36(3):633-644
本文利用1981~2008年我国南方地区200站逐日降水量、NCEP再分析资料和NCEP气候预报系统 (CFS) 的模式回算数据, 针对降水低频信号, 分析了江淮地区夏季降水的延伸期可预报性, 并选取对江淮持续性强降水有显著影响的东亚环流指数作为预报因子, 以降水20~50天低频分量作为预报量, 进行了针对江淮地区夏季持续性强降水过程的延伸期预报试验。结果表明, 江淮地区夏季降水具有明显的20~50天周期的低频振荡特征。降水的20~50天低频振荡, 尤其是峰谷值位相的变化与实际降水集中期和中断期的交替有较好的关系, 研究20~50天降水低频分量的延伸预报, 对于江淮地区夏季持续性强降水过程的延伸预报有一定的指示意义。本文尝试提出一种基于大气环流低频信号和数值模式预报产品的动力与统计相结合的预报方法, 以期为江淮地区夏季持续性降水过程的延伸期预报提供参考。  相似文献   

17.
东亚梅雨季节内振荡的气候特征   总被引:7,自引:1,他引:6  
梁萍  丁一汇 《气象学报》2012,70(3):418-435
影响中国、日本、朝鲜半岛的东亚梅雨是夏季风向北推进过程中的特有雨季。利用NCEP/NCAR逐日再分析资料、CMAP降水资料,将夏季风影响及夏季风降水的季节转换相结合,定义东亚梅雨的入、出梅指标;进而采用集合经验模态分解信号提取方法对东亚梅雨区降水季节内振荡及其大尺度环流条件的气候特征进行了详细分析;并对东亚梅雨季节内振荡对降水事件的指示作用进行讨论,为东亚梅雨区降水的延伸预报提供依据和参考。研究结果表明:(1)采用标准化候降水量的空间覆盖率,同时兼顾夏季风影响等条件确定的东亚梅雨入、出梅划分指标可较好地反映东亚梅雨的气候特征及东亚梅雨期的大尺度环流形势。(2)东亚梅雨全年降水量存在三峰型分布特征,峰值分别位于第27、36及47候。该三峰型特征主要受10—20及30—60d的低频振荡影响。比较而言,30—60d振荡对梅雨区降水三峰型的贡献较10—20d振荡大。(3)东亚梅雨区峰值降水与热带环流及北方高位涡冷空气输送的低频演变密切关联。在梅雨区北侧,中高纬度里海附近冷空气(高位涡)低频波列的东传及鄂霍次克海高位涡的西南向输送共同影响东亚梅雨区。在梅雨区南侧,通过热带低频异常强对流的激发作用,热带西太平洋至中国东北—鄂霍次克海地区形成沿经向分布的低层气旋-反气旋-气旋-反气旋波列,进而导致梅雨区低层形成低频偏北风和偏南风的辐合;而印度西海岸和阿拉伯海地区异常对流活动产生的波列向东北方向传播,亦对梅雨区低频峰值降水产生影响。对于低频谷值降水的大气低频演变,情况与上述基本相反。(4)东亚梅雨区降水不同位相下出现极端降水事件的概率有明显差异。梅雨区降水低频峰(谷)值位相下出现异常多(少)降水量的概率约为30%。因此,上述梅雨区降水低频振荡演变相关的大气低频振荡特征对梅雨区降水事件的延伸预报具有参考价值。  相似文献   

18.
我国西部冬季扰动源涡与东部夏季雨带分布   总被引:4,自引:8,他引:4  
柳艳香  汤懋苍 《高原气象》2001,20(1):109-112
我国西部 (85°10 5°E)冬季“扰动源涡”的位置对夏季东部雨带的配置具有支配作用。当西部“源涡”位于 35°N以北时 ,东部雨带多出现在黄河流域及其以北 (Ⅰ类雨型 ) ;源涡位于 32°35°N之间时 ,夏季雨带多出现在淮河流域 (Ⅱ类雨型 ) ;当源涡位于 32°N以南时 ,雨带多出现在长江流域或江南 (Ⅲ类雨型 )。藏东南热点区冬季的中强地热脉冲对我国夏季江淮和川黔的大水具有很强的指示作用  相似文献   

19.
夏季长江淮河流域异常降水事件环流差异及机理研究   总被引:10,自引:5,他引:5  
张庆云  郭恒 《大气科学》2014,38(4):656-669
长江、淮河同处东亚中纬度,天气过程的大尺度环流背景相似,大量相关研究基本是把江淮流域天气气候事件作为一个整体研究,然而对长江、淮河流域夏季降水的时空变化进行分析发现,长江、淮河流域夏季异常降水事件有各自不同的年际、年代际变化特征,但环流差异及成因并不十分清楚。本文根据中国台站降水资料及NCEP/NCAR再分析资料,利用物理量诊断和现代统计学等方法,重点分析长江、淮河流域梅雨期降水异常事件发生时南北半球大气环流内部动力过程的差异及成因。研究指出:长江(淮河)流域梅雨期降水异常偏多年500 hPa位势高度场亚洲中高纬度环流呈现为南北向(东西向)的波列与东亚中高纬鄂霍茨克海阻塞频次增多(减少)以及200 hPa高度场上东亚副热带高空西风急流强度加强(减弱)、稳定(移动)有关;长江(淮河)流域梅雨期降水异常偏多年主要水汽来源与南半球澳大利亚高压、马斯克林高压位置偏东(西)造成西太平洋150°E~180°(阿拉伯海50°E~60°E)地区越赤道气流加强有关。长江(淮河)流域梅雨期异常降水事件大气环流内部动力过程最显著的差异表现为:东亚副热带高空西风急流加强(减弱)以及南半球澳大利亚高压、马斯克林高压位置偏东(西)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号