首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tibetan Plateau (TP) is the source of many Asian river systems and serves as “the Asian water tower”. Precipitation variability is a strong component of both hydrological processes and energy cycles, and the study of precipitation in the TP is of great importance in the content of global warming. In this study, the annual and seasonal (spring: MAM; summer: JJA; autumn: SON; and winter: DJF) variations in precipitation are investigated in the eastern and central TP during 1961–2007, based on surface raw and adjusted observations as well as both NCEP/NCAR (1961–2007) and ERA-40 (1961–2001) reanalyses. The adjusted precipitation in the TP is higher than raw values on both the annual and seasonal basis due to adjustments of solid precipitation by a bias experiential model. At the annual spring and winter scales, the adjusted precipitation shows a significant increase calculated by the Mann–Kendall trend test. Compared with adjusted precipitation; both NCEP/NCAR and ERA-40 reanalyses capture the broad spatial distributions of mean annual and seasonal precipitation, but are less good at repeating the decadal variability. Both reanalyses show the drying phenomena in most regions and fail to represent the change patterns of precipitation observed by the adjusted observations. Both NCEP/NCAR and ERA-40 have larger inconsistencies which may be caused by the differences between actual and model topography. This suggests that it is crucial to use the adjusted precipitation in the climate research and reanalysis products should be paid more attention in the TP.  相似文献   

2.
Precipitation indices are commonly used as climate change indicators. Considering four Climate Variability and Predictability-recommended indices, this study assesses possible changes in their spatial patterns over Portugal under future climatic conditions. Precipitation data from the regional climate model Consortium for Small-Scale Modelling–Climate version of the Local Model (CCLM) ensemble simulations with ECHAM5/MPI-OM1 boundary conditions are used for this purpose. For recent–past, medians and probability density functions of the CCLM-based indices are validated against station-based and gridded observational dataset from ENSEMBLES-based (gridded daily precipitation data provided by the European Climate Assessment & Dataset project) indices. It is demonstrated that the model is able to realistically reproduce not only precipitation but also the corresponding extreme indices. Climate change projections for 2071–2100 (A1B and B1 SRES scenarios) reveal significant decreases in total precipitation, particularly in autumn over northwestern and southern Portugal, though changes exhibit distinct local and seasonal patterns and are typically stronger for A1B than for B1. The increase in winter precipitation over northeastern Portugal in A1B is the most important exception to the overall drying trend. Contributions of extreme precipitation events to total precipitation are also expected to increase, mainly in winter and spring over northeastern Portugal. Strong projected increases in the dry spell lengths in autumn and spring are also noteworthy, giving evidence for an extension of the dry season from summer to spring and autumn. Although no coupling analysis is undertaken, these changes are qualitatively related to modifications in the large-scale circulation over the Euro-Atlantic area, more specifically to shifts in the position of the Azores High and associated changes in the large-scale pressure gradient over the area.  相似文献   

3.
利用观测资料、GPCC再分析资料和第六次耦合模式比较计划(CMIP6)模拟结果,研究了我国西北地区近几十年及未来降水变化趋势。结果表明,1979—2019年我国西北干旱半干旱区降水在全年各季节均有显著增加,其中秋季增加最多。CMIP6模拟结果显示,随着全球变暖,我国西北地区降水在2015—2100年将继续增加。至21世纪末,在SSP2-4.5和SSP5-8.5情景下,我国西北地区年平均降水量将分别增加约13.7%(37 mm)和25.8%(78 mm),其中降水量增加最多的季节分别为夏季和春季。考虑到西北地区蒸发量也将随全球变暖而增加,模式平均的结果显示西北地区年平均净降水量在两种情景下的增幅分别约1.4%和4.9%,表明我国西北地区未来气候呈现显著的变湿趋势。进一步分析表明,西北地区未来降水增加可能与局地大气低层位势高度降低和上升运动加强有关。  相似文献   

4.
青藏高原未来气候变化预估:CMIP5模式结果   总被引:14,自引:2,他引:12  
胡芩  姜大膀  范广洲 《大气科学》2015,39(2):260-270
本文使用国际耦合模式比较计划第5阶段(CMIP5)中对青藏高原气候模拟较优的气候模式, 在RCP4.5中等偏低辐射强迫情景下对青藏高原未来气候变化进行了预估研究。结果表明, 青藏高原年均地表气温在2006~2100年的线性趋势平均为0.26℃/10a, 增暖幅度与海拔高度大体成正比;相比于1986~2005年参考时段, 2090年代平均升温2.7℃, 21世纪末期增温幅度明显高于早期和中期;在早、中和末期, 年均增温分别为0.8~1.3℃、1.6~2.5℃和2.1~3.1℃;各季节也均为变暖趋势, 其中冬季增温最大。对于年均降水来说, 未来百年将小幅增加, 集合平均趋势为1.15%/10a, 2090年代较参考时段增加10.4%;在早、中和末期的变化范围分别为-1.8%至15.2%、-0.9%至17.8%和1.4%至21.3%;季节降水也呈增加趋势, 夏季增幅明显高于其余三个季节且在21世纪末期较大, 青藏高原未来年均降水增加主要来自于夏季。需要指出的是, 上述预估结果在气候模式间存在着一定的差异, 未来气候变化的不确定性范围较大, 地表气温的可信度相对较高, 而降水的则偏低。  相似文献   

5.
基于CMIP6的16个全球模式试验数据,多模式集合预估了《巴黎协定》1.5°C/2°C温升目标下“一带一路”倡议的主要陆域未来气温和降水变化。与观测相比较,多模式集合能够比较准确地刻画“一带一路”主要陆域1995~2014年气温和降水的空间结构特征。在SSP2-4.5、SSP3-7.0和SSP5-8.5三种不同路径情景下,相对于工业革命前(1850~1900年),全球升温1.5°C与2°C分别将发生在2020年代中后期与2040年左右。全球1.5°C与2°C温升目标下,预计“一带一路”陆域平均的气温分别显著升高1.84°C和2.43°C,两者相差0.59°C,模式间标准差分别为0.18°C和0.21°C;区域平均的降水分别显著增加20.14 mm/a和30.02 mm/a,相差9.88 mm/a,模式间标准差分别为10.79 mm/a和13.72 mm/a。两种温升目标下,“一带一路”主要陆域气温空间上均表现为一致性显著增暖,高纬度的增温幅度普遍比低纬度大;降水变化具有明显的空间差异性,地中海与黑海地区、中国南部至中南半岛地区减少,其他地区的降水普遍增加。P-E指数表征的干旱化未来在欧洲地区、中国南部至中南半岛地区、南亚印度东部地区、东南亚和赤道非洲中部地区达到最大。  相似文献   

6.
基于1970—2015年青藏高原地区78个站点的观测资料,应用物理方法计算了高原中东部地区的感热通量。利用小波分析、相关性分析等研究了高原中东部感热通量的时空特征和影响因子。结果表明,高原年平均和春夏季节,感热通量周期为3~4 a,而秋冬季节为2~3 a;感热通量的变化趋势为,1970—1980年和2001—2015年感热通量呈增加趋势,而1981—2000年呈减小趋势;高原年平均和各季节的最强感热加热中心均位于高原南坡E区(除冬季外),最弱加热区域位于高原西北部A区(夏季除外);高原春秋季节感热通量的空间分布均匀,冬夏季节有明显的梯度分布且梯度相反,夏季呈现自东到西的梯度;春季、夏季及秋季,高原感热通量和降水呈负相关;高原10 m风速的极值中心随季节北上南撤变化与地气温差的强弱变化共同决定了感热通量的季节变化。  相似文献   

7.
青藏高原与中国其他地区气候突变时间的比较   总被引:25,自引:5,他引:20  
丁一汇  张莉 《大气科学》2008,32(4):794-805
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。  相似文献   

8.
1980~2014年中国生态脆弱区气候变化特征分析   总被引:1,自引:0,他引:1  
为了全面把握20世纪80年代以来中国生态脆弱区气候变化的特征,利用基于全国2000多个站点的格点化逐月资料,对中国典型生态脆弱区1980~2014年的日平均气温、日最高和最低气温、降水、相对湿度、风速和蒸发皿蒸发量的变化特征进行了分析。结果表明:(1)中国生态脆弱区日平均气温、日最高和最低气温几乎都呈上升趋势;日平均气温增幅北方大于南方;北方生态脆弱区日平均气温、日最高和最低气温、南方生态脆弱区日最低气温的季节增幅多为春季最大,秋季或冬季最小。(2)全区平均降水变化趋势不明显;生态脆弱区降水距平百分率春季多为增长趋势,夏季多为减少趋势,秋、冬季和年北方多为增长趋势,南方多为减少趋势。(3)相对湿度以减少趋势为主,只有黄土高原南部脆弱区秋、冬季和干旱半干旱区脆弱区冬季相对湿度距平百分率的趋势为正,这几个正值区同时也是降水增长大值区。(4)风速基本为减少趋势,春季减少趋势最大。(5)全区平均蒸发皿蒸发量春、夏季和年为减少趋势,冬季为增长趋势;北方生态脆弱区蒸发皿蒸发量四季和年多呈减少趋势;南方生态脆弱区蒸发皿蒸发量春、夏季以减少趋势为主,秋、冬季和年呈增长趋势。  相似文献   

9.
CMIP6 Evaluation and Projection of Temperature and Precipitation over China   总被引:2,自引:0,他引:2  
This article evaluates the performance of 20 Coupled Model Intercomparison Project phase 6(CMIP6)models in simulating temperature and precipitation over China through comparisons with gridded observation data for the period of 1995–2014,with a focus on spatial patterns and interannual variability.The evaluations show that the CMIP6 models perform well in reproducing the climatological spatial distribution of temperature and precipitation,with better performance for temperature than for precipitation.Their interannual variability can also be reasonably captured by most models,however,poor performance is noted regarding the interannual variability of winter precipitation.Based on the comprehensive performance for the above two factors,the“highest-ranked”models are selected as an ensemble(BMME).The BMME outperforms the ensemble of all models(AMME)in simulating annual and winter temperature and precipitation,particularly for those subregions with complex terrain but it shows little improvement for summer temperature and precipitation.The AMME and BMME projections indicate annual increases for both temperature and precipitation across China by the end of the 21st century,with larger increases under the scenario of the Shared Socioeconomic Pathway 5/Representative Concentration Pathway 8.5(SSP585)than under scenario of the Shared Socioeconomic Pathway 2/Representative Concentration Pathway 4.5(SSP245).The greatest increases of annual temperature are projected for higher latitudes and higher elevations and the largest percentage-based increases in annual precipitation are projected to occur in northern and western China,especially under SSP585.However,the BMME,which generally performs better in these regions,projects lower changes in annual temperature and larger variations in annual precipitation when compared to the AMME projections.  相似文献   

10.
根据河北省辛集气象站近54 a(1957-2010年)的月平均地面观测资料,采用气候统计学方法,分别从气温及降水的趋势变化、周期变化、突变特征等方面进行分析,总结该市近54 a气温及降水的变化特征。结果表明:1)近54 a来辛集市年平均气温、各季平均气温及极端最低气温呈显著上升趋势,四季中冬季增温趋势最明显,夏季增温幅度最弱,极端最低气温上升而极端最高气温下降,导致气温日较差减小;2)在20世纪60年代,年平均和冬季气温表现出准2~3 a的显著年际变化周期,年平均和春季气温还表现出准7 a的显著年际周期特征;3)该市年降水量近54 a来整体呈先增加后减少的变化趋势;4)年和夏秋季降水量在20世纪60年代均表现出准3~4 a的周期特征,而在春季准7 a的年际振荡贯穿始终;5)辛集市的气温变化趋势以及突变开始时间与全国、河北省以及石家庄地区近50 a气温变化基本一致,但该市的降水量变化则略有不同,降水量变化的长期趋势不显著且突变不明显,主要是由于降水量的时空变化差异性较大。  相似文献   

11.
Cut-off lows (COLs) are significantly associated with many convective events and anomalous regional climate in the Northeast China. By using 49-year NCEP/NCAR reanalysis data, COL events are detected and tracked by an objective and automatic method based on synoptic concept model. Based on this dataset and daily rain-gauge records in Northeast China during 1979–2005, seasonal climatology of COLs and associated precipitation patterns over Northeast China are investigated. Most COLs have a short lifetime of less than a week and have a spatial size ranging from 500 to 1,000 km, with slight seasonal differences. Temporal variation of COL occurrence exhibits a seasonal cycle, with a peak in summer, and considerable interannual variability. The COLs tend to occur more frequently over the northern Northeast China Plain, and the center for maximum frequency shows a zonal oscillation, with an extension to continent in summer and a shift to western North Pacific coast in winter. Most COLs form to the east of Lake Baikal and decay over the western North Pacific coast. COLs are apt to move along east or southeast passages around the year, and tracks are relatively more complicated in warm seasons. About a quarter of annual mean precipitation over Northeast China is associated with COLs. Moreover, COL-associated precipitation contributes greatly to total precipitation in northern and northwestern parts of Northeast China, and the ratios of COL contribution are stronger during spring and autumn than in summer.  相似文献   

12.
Based on daily precipitation data from 524 meteorological stations in China during the period 1960–2009, the climatology and the temporal changes (trends, interannual, and decadal variations) in the proportion of seasonal precipitation to the total annual precipitation were analyzed on both national and regional scales. Results indicated that (1) for the whole country, the climatology in the seasonal distribution of precipitation showed that the proportion accounted for 55 % in summer (June–August), for around 20 % in both spring (March–May) and autumn (September–November), and around 5 % in winter (December–February). But the spatial features were region-dependent. The primary precipitation regime, “summer–autumn–spring–winter”, was located in central and eastern regions which were north of the Huaihe River, in eastern Tibet, and in western Southwest China. The secondary regime, “summer–spring–autumn–winter”, appeared in the regions south of the Huaihe River, except Jiangnan where spring precipitation dominated, and the southeastern Hainan Island where autumn precipitation prevailed. (2) For the temporal changes on the national scale, first, where the trends were concerned, the proportion of winter precipitation showed a significantly increasing trend, while that of the other three seasons did not show any significant trends. Second, for the interannual variation, the variability in summer was the largest among the four seasons and that in winter was the smallest. Then, on the decadal scale, China experienced a sharp decrease only in the proportion of summer precipitation in 2000. (3) For the temporal changes on the regional scale, all the concerned 11 geographic regions of China underwent increasing trends in the proportion of winter precipitation. For spring, it decreased over the regions south of the Yellow River but increased elsewhere. The trend in the proportion of summer precipitation was generally opposite to that of spring. For autumn, it decreased over the other ten regions except Inner Mongolia with no trend. It is noted that the interannual variability of precipitation seasonality is large over North China, Huanghuai, and Jianghuai; its decadal variability is large over the other regions, especially over those regions south of the Yangtze River.  相似文献   

13.
Properties of cloud and precipitation over the Tibetan Plateau   总被引:1,自引:0,他引:1  
The characteristics of seasonal precipitation over the Tibetan Plateau(TP) were investigated using TRMM(Tropical Rainfall Measuring Mission) precipitation data(3B43). Sensitive regions of summer precipitation interannual variation anomalies were investigated using EOF(empirical orthogonal function) analysis. Furthermore, the profiles of cloud water content(CWC) and precipitable water in different regions and seasons were analyzed using TRMM-3A12 data observed by the TRMM Microwave Imager. Good agreement was found between hydrometeors and precipitation over the eastern and southeastern TP, where water vapor is adequate, while the water vapor amount is not significant over the western and northern TP.Further analysis showed meridional and zonal anomalies of CWC centers in the ascending branch of the Hadley and Walker Circulation, especially over the south and east of the TP. The interannual variation of hydrometeors over the past decade showed a decrease over the southeastern and northwestern TP, along with a corresponding increase over other regions.  相似文献   

14.
CMIP5全球气候模式对青藏高原地区气候模拟能力评估   总被引:9,自引:4,他引:5  
胡芩  姜大膀  范广洲 《大气科学》2014,38(5):924-938
青藏高原是气候变化的敏感和脆弱区,全球气候模式对于这一地区气候态的模拟能力如何尚不清楚。为此,本文使用国际耦合模式比较计划第五阶段(CMIP5)的历史模拟试验数据,评估了44 个全球气候模式对1986~2005 年青藏高原地区地表气温和降水两个基本气象要素的模拟能力。结果表明,CMIP5 模式低估了青藏高原地区年和季节平均地表气温,年均平均偏低2.3℃,秋季和冬季冷偏差相对更大;模式可较好地模拟年和季节平均地表气温分布型,但模拟的空间变率总体偏大;地形效应校正能够有效订正地表气温结果。CMIP5 模式对青藏高原地区降水模拟能力较差。尽管它们能够模拟出年均降水自西北向东南渐增的分布型,但模拟的年和季节降水量普遍偏大,年均降水平均偏多1.3 mm d-1,这主要是源于春季和夏季降水被高估。同时,模式模拟的年和季节降水空间变率也普遍大于观测值,尤其表现在春季和冬季。相比较而言,44 个模式集合平均性能总体上要优于大多数单个模式;等权重集合平均方案要优于中位数平均;对择优挑选的模式进行集合平均能够提高总体的模拟能力,其中对降水模拟的改进更为显著。  相似文献   

15.
Climate changes in future 21 st century China and their uncertainties are evaluated based on 22 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5). By 2081–2100, the annual mean surface air temperature(SAT) is predicted to increase by 1.3℃± 0.7℃, 2.6℃± 0.8℃ and 5.2℃± 1.2℃ under the Representative Concentration Pathway(RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, relative to 1986–2005, respectively. The future change in SAT averaged over China increases the most in autumn/winter and the least in spring, while the uncertainty shows little seasonal variation.Spatially, the annual and seasonal mean SAT both show a homogeneous warming pattern across China, with a warming rate increasing from southeastern China to the Tibetan Plateau and northern China, invariant with time and emissions scenario.The associated uncertainty in SAT decreases from northern to southern China. Meanwhile, by 2081–2100, the annual mean precipitation increases by 5% ± 5%, 8% ± 6% and 12% ± 8% under RCP2.6, RCP4.5 and RCP8.5, respectively. The national average precipitation anomaly percentage, largest in spring and smallest in winter, and its uncertainty, largest in winter and smallest in autumn, show visible seasonal variations. Although at a low confidence level, a homogeneous wetting pattern is projected across China on the annual mean scale, with a larger increasing percentage in northern China and a weak drying in southern China in the early 21 st century. The associated uncertainty is also generally larger in northern China and smaller in southwestern China. In addition, both SAT and precipitation usually show larger seasonal variability on the sub-regional scale compared with the national average.  相似文献   

16.
Weather and Climate Effects of the Tibetan Plateau   总被引:5,自引:1,他引:4  
Progress in observation experiments and studies concerning the effects of the Tibetan Plateau (TP) on weather and climate during the last 5 years are reviewed. The mesoscale topography over the TP plays an important role in generating and enhancing mesoscale disturbances. These disturbances increase the surface sensible heat (SH) flux over the TP and propagate eastward to enhance convection and precipitation in the valley of Yangtze River. Some new evidence from both observations and numerical simulations shows that the southwesterly flow, which lies on the southeastern flank of the TP, is highly correlated with the SH of the southeastern TP in seasonal and interannual variability. The mechanical and thermal forcing of the TP is an important climatic cause of the spring persistent rains over southeastern China. Moreover, the thermodynamic processes over the TP can influence the atmospheric circulation and climate over North America and Europe by stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and can affect the atmospheric circulation over the southern Indian Ocean. Estimating the trend in the atmospheric heat source over the TP shows that, in contrast to the strong surface and troposphere warming, the SH over the TP has undergone a significant decreasing trend since the mid-1980s. Despite the fact that in situ latent heating presents a weak increasing trend, the springtime atmospheric heat source over the TP is losing its strength. This gives rise to reduced precipitation along the southern and eastern slopes of the TP and to increased rainfall over northeastern India and the Bay of Bengal.  相似文献   

17.
《Atmospheric Research》2005,73(1-2):69-85
This paper reports the results of the analysis of annual mean temperature and precipitation series from 171 meteorological stations distributed over Castile and Leon [Castilla y León in Spanish] in Spain on monthly, seasonal and annual time-scales for a 37-year study period (1961–1997). Various statistical tools were used to detect and characterize significant changes in these series. The magnitude of the trends was derived from the slopes of the regression lines using the least squares method, and the statistical significance was determined by means of nonparametric tests. Positive trends of about 0.33 °C in the annual mean temperature were found for the whole period. Mean temperatures increased in spring and winter, the winter trend being statistically significant. The months of December and March also showed significant trends. Decreases in rainfall were found for three seasons (winter, spring and autumn), with statistically significant trends in March. Summer precipitation showed slight increases over the 37-year period. On this basis, the authors consider that the increase in summer precipitation and the decrease in the range of average temperatures between the warmest and the coldest months of the year (continentality), point towards a trend to a more oceanic climate in Castile and Leon.  相似文献   

18.
Using a continuous multi-decadal simulations over the period 1981–2010, subseasonal to seasonal simulations of the Climate Forecast System version 2 (CFSv2) over Iran against the Climatic Research Unit (CRU) dataset are evaluated. CFSv2 shows cold biases over northern hillsides of the Alborz Mountains with the Mediterranean climate and warm biases over northern regions of the Persian Gulf and the Oman Sea with a dry climate. Magnitude of the model bias for 2-m temperature over different regions of Iran varies by season, with the least bias in temperate seasons of spring and autumn, and the largest bias in summer. The model bias decreases as temporal averaging period increases from seasonal to annual. The forecast generally produces dry and wet biases over dry and wet regions of Iran, respectively. In general, 2-m temperature over Iran is better captured than precipitation, but the prediction skill of precipitation is generally high over western Iran. Averaged over Iran, observations indicated that 2-m temperature has been gradually increasing during the studied period, with a rate of approximately 0.5 °C per decade, and the upward trend is well simulated by CFSv2. Averaged over Iran, both observations and simulation results indicated that precipitation has been decreasing in spring, with averaged decreasing trends of 0.8 mm (observed) and 1.7 mm (simulated) per season each year during the period 1981–2010. Observations indicated that the maximum increasing trend of 2-m temperature has occurred over western Iran (nearly 0.7 °C per decade), while the maximum decreasing trend of annual precipitation has occurred over western and parts of southern Iran (nearly 45 to 50 mm per decade).  相似文献   

19.
利用MM5V3区域气候模式单向嵌套ECHAM5全球环流模式的结果,对中国地区实际温室气体浓度下当代气候(1981—2000年)及IPCC A1B情景下21世纪中期气候(2041—2060年)分别进行了水平分辨率为50 km的模拟试验。首先检验全球和区域模式对当代气候的模拟情况,结果表明:区域模式对中国地区地面温度和降水空间分布的模拟能力优于全球模式;与实际观测相比,区域模式模拟的地面温度在中国大部分地区偏低,模拟的降水量偏多,降水位置偏北。IPCCA1B情景下中国地区21世纪中期气候变化的模式结果显示:各季节地面温度在全国范围内都将比当代升高1.2~3.9℃,且升温幅度具有北方大于南方、冬季大于夏季的时空分布特征;降水变化具有一定的区域性和季节性,秋季和冬季降水在全国大部分地区都将增加10%~30%,春季和夏季降水则呈现"北方减少、南方增多"的趋势,变化幅度在-10%~10%之间。21世纪中期地面温度和降水变化还具有一定的年际特征:地面温度在中国地区各子区域均表现为上升趋势,升温速率在0.7~0.9℃/10a之间,温度变率也比当代有所增大;降水在西北地区略呈下降趋势,在其它子区域均为上升,降水变率的变化具有区域性特征。  相似文献   

20.
Spatial patterns and temporal trends of precipitation in Iran   总被引:3,自引:0,他引:3  
Spatial patterns of monthly, seasonal and annual precipitation over Iran and the corresponding long-term trends for the period 1951–2009 are investigated using the Global Precipitation Climatology Centre gridded dataset. Results suggest that the spatial patterns of annual, winter and spring precipitation and the associated coefficients of variation reflect the role of orography and latitudinal extent between central-southern arid and semi-arid regions and northern and western mountainous areas. It is also shown that precipitation occurrence is almost regularly distributed within the year in northern areas while it is more concentrated in a few months in southern Iran. The spatial distribution of Mann–Kendal trend test (Z statistics) for annual precipitation showed downward trend in north-western and south-eastern Iran, whereas western, central and north-eastern exhibited upward trend, though not statistically significant in most regions. Results for winter and autumn revealed upward trend in most parts of the country, with the exception of north-western and south-eastern where a downward trend is observed; in spring and summer, a downward trend seems to prevail in most of Iran. However, for all seasons the areas where the detected trend is statistically significant are limited to a few spot regions. The overall results suggest that the precipitation is decreasing in spring and summer and increasing in autumn and winter in most of Iran, i.e. less precipitation during the warm season with a consequent intensification of seasonality and dryness of the country. However, since the detected trends are often not statistically significant, any stringent conclusion cannot be done on the future tendencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号