首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Based on observed snow and precipitation data and NCEP/NCAR reanalysis data,the relationship between the number of winter snow cover days in Northeast China and the following summer’s rainfall in the northern part of southern China is analyzed and the possible underlying mechanisms are discussed.The results indicate that a negative relationship is significant throughout the study period,especially more obvious after the 1980s.The pre-winter circulation patterns in years with more snow cover days and less summer rainfall in the south bank of the Yangtze River are almost the same.In years with more snow cover days,lower temperatures at the lower level over Northeast China are found in winter and spring.The winter monsoon is weaker and retreats later in these years than in those with fewer snow cover days.In spring of years with more snow cover days,anomalous cyclonic circulation is observed over Northeast China,and anomalous northerly wind is found in eastern China.In summer of these years,anomalous northeasterly wind at the lower level is found from the area south of the Yangtze River to the East China Sea and Yellow Sea;and with less southwesterly water vapor transport,the rainfall in the area south of the Yangtze River is less than normal,and the opposite patterns are true in years with fewer snow cover days.In recent years,the stable relationship between winter snow cover in Northeast China and summer rainfall in the Yangtze River basin can be used for summer rainfall prediction.The results are of great importance to short-term climate prediction for summer rainfall.  相似文献   

2.
Decadal Features of Heavy Rainfall Events in Eastern China   总被引:1,自引:0,他引:1       下载免费PDF全文
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1990s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s-1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution.  相似文献   

3.
The number of haze days and daily visibility data for 543 stations in China were used to define the probabilities of four grades of haze days: slight haze(SLH) days; light haze(LIH) days; moderate haze(MOH) days; and severe haze(SEH) days. The change trends of the four grades of haze were investigated and the following results were obtained. The highest probability was obtained for SLH days(95.138%), which showed a decreasing trend over the last54 years with the fastest rate of decrease of-0.903% ·(10 years)-1 and a trend coefficient of-0.699, passing the 99.9%confidence level. The probabilities of LIH and MOH days increased steadily, whereas the probability of SEH days showed a slight downward trend during that period. The increasing probability of SLH days was mainly distributed to the east of 105°E and the south of 42°N and the highest value of the trend coefficient was located in the Pearl River Delta and Yangtze River Delta regions. The increasing probability of LIH days was mainly distributed in eastern China and the southeastern coastal region. The probabilities of MOH and SEH days was similar to the probability of LIH days. An analysis of the four grades of haze days in cities with different sizes suggested that the probability of SLH days in large cities and medium cities clearly decreased during the last 54 years. However, the probabilities of LIH days was 10% and increased steadily. The probability of MOH days showed a clear interdecadal fluctuation and the probability of SEH days showed a weak upward trend. The probability of SLH days in small cities within 0.8° of large or medium cities decreased steadily, but the probability of LIH and MOH days clearly increased, which might be attributed to the impact of large and medium cities. The probability of SLH days in small cities 1.5° from a large or medium city showed an increasing trend and reached 100% after 1990; the probability of the other three grades was small and decreased significantly.  相似文献   

4.
With daily precipitation records at 586 stations in China for 1960-2004, this study investigates the spatio-temporal variation of the number of extreme wet days (NEWD) for each season in China and its relationship with SST anomalies and associated atmospheric circulation anomaly patterns, in which a threshold of extreme precipitation for a season and a station is defined as the value of the 90th percentile when the precipitation records for wet days during the season are ranked in an increasing order. Results show that there are significant increases of the NEWD along the Yangtze River valley during winter and summer, in North China during winter, in South China during spring, in Northeast China during winter and spring, and in Northwest China throughout the seasons, while there is a remarkable decrease in North China during summer. Besides the linear trend, the NEWD also exhibits considerable interannual and interdecadal variabilities. After eliminating the linear trend, the NEWD anomalies show distinct seasonal patterns. The NEWD anomalies are characterized by a "dipole" mode with opposite phases between northern and southern China in spring and autumn, a "tri-pole" mode with opposite phases between Yangtze River valley and southern and northern China in summer, and a "monopole" mode with the same phase over most of China in winter. The relationship of the NEWD anomalies in China with the SST anomalies in Indian and Pacific Oceans is found to be mainly dependent on the ENSO, and associated atmospheric circulation anomaly patterns for the ENSO’s impact on the NEWD in China are identified.  相似文献   

5.
Based on the variations of geographical locations, the summer rain belts over eastern China were classified in this study into eight types: Inner Mongolia, North China, the Yellow River, the Huaihe River, the Yangtze River, the northern and southern parts of Jiangnan ( to the south of the lower Yangtze River valley), and South China. The file of 8-type rain belts was compiled from 1470 to 2005, and in order to extend the file of rain belts, it was further merged into a file of 4-type rain belts and also completed during the last millennium from 1000 to 1999. At last, the two files show that summer rain belts frequently occur in the Yangtze River valley in warm climate periods, but in the Yellow River or the Huaihe River valley in cold periods.  相似文献   

6.
This study analyzed the interdecadal changes in the diurnal variability of summer(June-August) precipitation over eastern China during the period 1966-2005 using hourly station rain gauge data.The results revealed that rainfall diurnal variations experienced significant interdecadal changes.Over the area to the south of the Yangtze River,as well as the area between the Yangtze and Yellow Rivers,the percentages of morning rainfall(0000-1200 LST) to total rainfall in terms of amount,frequency and intensity,all exhibited increasing interdecadal trends.On the contrary,over North China,decreasing trends were found.As a result,diurnal rainfall peaks also presented pronounced interdecadal variations.Over the area between the Yangtze and Yellow Rivers,there were 16 out of 46 stations with afternoon(1200-0000 LST) frequency peaks in the first 20 years of the 40-year period of study,while only eight remained in the latter 20 years.In North China,seven stations experienced the opposite changes,which accounted for about 21% of the total number of stations.The possible causes for the interdecadal changes in diurnal features were discussed.As the rainfall in the active monsoon period presents morning diurnal peaks,with afternoon peaks in the break period,the decrease(increase) of rainfall in the active monsoon period over North China(the area south of the Yangtze River and the area between the Yangtze and Yellow Rivers) may contribute to interdecadal changes in diurnal rainfall variability.  相似文献   

7.
Daily precipitation for 1960–2011 and maximum/minimum temperature extremes for 1960–2008 recorded at 549 stations in China are utilized to investigate climate extreme variations.A set of indices is derived and analyzed with a main focus on the trends and variabilities of daily extreme occurrences.Results show significant increases in daily extreme warm temperatures and decreases in daily extreme cold temperatures,defined as the number of days in which daily maximum temperature(Tmax)and daily minimum temperature(Tmin)are greater than the 90th percentile and less than the10th percentile,respectively.Generally,the trend magnitudes are larger in indices derived from Tmin than those from Tmax.Trends of percentile-based precipitation indices show distinct spatial patterns with increases in heavy precipitation events,defined as the top 95th percentile of daily precipitation,in western and northeastern China and in the low reaches of the Yangtze River basin region,and slight decreases in other areas.Light precipitation,defined as the tail of the5th percentile of daily precipitation,however,decreases in most areas.The annual maximum consecutive dry days(CDD)show an increasing trend in southern China and the middle-low reach of the Yellow River basin,while the annual maximum consecutive wet days(CWD)displays a downtrend over most regions except western China.These indices vary significantly with regions and seasons.Overall,occurrences of extreme events in China are more frequent,particularly the night time extreme temperature,and landmasses in China become warmer and wetter.  相似文献   

8.
Interdecadal variation of the relationships between ENSO and the summer interannual climate variability in China is investigated by using techniques of sliding correlation analysis with the tropical Pacific SSTA and the observed surface air temperature and precipitation from stations in China. The results indicate that there are stable and robust relations that the Northern China is relatively dry during the developing phase of ENSO while the Yangtze River valley is relatively wet during the decaying phase of ENSO. On the other hand, interdecadal variations of the relations are also found in other regions. Over the time both prior to the Pacific decadal climate shift (before the late 1970s) and after it (after the late 1970s), during the developing phases of ENSO the summer precipitation anomaly in South China changed from below to above normal, whereas that in Northeast China changed from above to below normal; the summer surface air temperature anomaly in North and Northeast China changed from cooling to warming, whereas that in South China changed to cooling; during the decaying phases of ENSO the North China changed from wetter to dryer while the Huai River valley changed from dryer to normal; North China, Yangtze River valley and South China tend to be warmer. Based on the composite analysis of the NCAR/NCEP reanalyze datasets, significant differences existing in ENSO-related atmospheric circulation anomaly in East Asia during pre- and post-shift periods may be responsible for the interdecadal variation of relationships between ENSO and surface air temperature and precipitation in China.  相似文献   

9.
This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall.  相似文献   

10.
Interdecadal variability of temperature and precipitation in China since 1880   总被引:28,自引:0,他引:28  
Reconstruction of a homogeneous temperature and precipitation series for China is crucial for a proper understanding of climate change over China. The annual mean temperature anomaly series of ten regions are found from 1880 to 2002. Positive anomalies over China during the 1920s and 1940s are noticeable.The linear trend for the period of 1880-2002 is 0.58℃ (100a)^-1, which is a little less than the global mean (0.60℃ (100a)^-l). 1998 was the warmest year in China since 1880, which is in agreement with theestimation of the global mean temperature. The mean precipitation on a national scale depends mainly on the precipitation over East China. Variations of precipitation in West China show some characteristics which are independent of those in the east. However, the 1920s was the driest decade not only for the east, but also for eastern West China during the last 120 years. The most severe drought on a national scale occurred in 1928. Severe droughts also occurred in 1920, 1922, 1926, and 1929 in North China.It is noticeable that precipitation over East China was generally above normal in the 1950s and 1990s;severe floods along the Yangtze River in 1954, 1991, and 1998 only occurred in these two wet decades.An increasing trend in precipitation variations is observed during the second half of the 20th century in West China, but a similar trend is not found in East China, where the 20- to 40-year periodicities are predominant in the precipitation variations.  相似文献   

11.
近四十年我国东部盛夏日降水特性变化分析   总被引:45,自引:7,他引:38  
基于中国地区740台站的日降水资料,细致分析了近40年我国东部盛夏即7、8月份降水长期趋势和年代际变化特征。按小雨、中雨、大雨以及暴雨降水强度分类,探讨了不同强度降水在我国东部降水变化中的贡献。结果表明,中国东部地区盛夏降水变化主要受暴雨强度降水变化的影响,占总降水变化60%以上。近40年来,盛夏长江流域降水量、 降水频率、极端降水频率以及暴雨降水强度均呈增大趋势,在华北地区则呈减小趋势,除降水频率在长江流域的变化趋势绝对值比华北地区小外,另三个指标在长江流域的趋势变化值大约是后者的2倍。降水强度在中国东部表现出一致的增大趋势,但华北地区增大趋势不显著。华北地区降水的减少主要是小雨强度降水频率减小的结果,强降水的频率和强度在该地区也呈微弱的减小趋势,其中小雨强度降水频率减小趋势大值中心值达到-3%/10a,比中雨以上强度降水频率变化趋势值大一个量级;长江流域降水的增多,是各强度降水频率和强度增大共同作用的结果。长江流域和华北地区在区域平均降水频率、降水强度、极端降水频率、最大降水量的时间序列上,彼此均为负相关关系,其中降水频率和极端降水频率序列在两区域的相关系数通过99%的信度检验。Mann-Kendall检验表明,除华北地区降水强度外,其他降水指标均存在显著的年代际跃变。与1970年代末的气候跃变相对应,华北地区降水频率较之长江流域的跃变明显;但长江流域极端降水在1970年代末的跃变较之华北地区更显著,其降水强度、极端降水频率以及最大降水量均于1970年代末期前后发生显著年代际跃变。  相似文献   

12.
Regional trends in recent precipitation indices in China   总被引:20,自引:0,他引:20  
Summary Regional characteristics of recent precipitation indices in China were analyzed from a daily rainfall dataset based on 494 stations during 1961 to 2000. Some indices such as precipitation percentiles, precipitation intensity, and precipitation persistence were used and their inter-decadal differences were shown in this study. Over the last 40 years, precipitation indices in China showed increasing and decreasing trends separated into three main regions. A decreasing trend of annual precipitation and summer precipitation was observed from the southern part of northeast China to the mid-low Yellow River valley and the upper Yangtze River valley. This region also showed a decreasing trend in precipitation intensity and a decreasing trend in the frequency of persistent wet days. On the other hand, increasing trends in precipitation intensity were found in the Xinjiang region (northwest China), the northern part of northeast China, and southeast China, mainly to the south of the mid-low Yangtze River. The indices of persistent wet days and strong rainfall have contributed to the increasing frequency of floods in southeast China and the Xinjiang region in the last two decades. Persistent dry days and weakening rainfall have resulted in the increasing frequency of drought along the Yellow River valley including North China. Regional precipitation characteristics and trends in precipitation indices indicate the climate state variations in the last four decades. A warm-wet climate state was found in northwest China and in the northern part of northeast China. A warm-dry climate state extends from the southern part of northeast China to the Yellow River valley, while a cool-wet summer was found in southeast China, particularly in the mid-low Yangtze River valley over the last two decades.  相似文献   

13.
2003夏季淮河流域发生了自1991年以来最为严重的洪涝灾害。为了更进一步认识淮河洪水的历史背景,根据史料反演得到的历史上淮河流域洪涝资料以及降水量观测资料分析了1470-2002年该地区的洪涝发生情况。根据淮河流域的洪水在全国范围降水分布和其他地区的关系分类,淮河降水主要有两种类型:第一种是长江淮河型,雨带集中在长江下游,也包括淮河;第二种是华北南部型,降水主要集中在华北南部和淮河。通过分析这两种类型的降水分布与对应的500hPa高度场的关系,得知淮河洪水和大气环流的异常有着紧密的联系,进一步研究洪水发生的规律,了解其形成的大气环流机制将有助于淮河的防洪抗汛工作。  相似文献   

14.
Summary The main characteristics of spatial and temporal variability of dryness and wetness during the last 530 years (1470–1999) are classified over five centuries. They have been investigated by using 100-site dryness/wetness index data that has recorded the historical weather conditions that affect agriculture and living conditions in eastern China. A set of principal modes of spatial variability and time coefficient series describing the dominant temporal variability are extracted by a diagnostic method, the rotated empirical orthogonal function (REOF) analysis. The long-term precipitation around Beijing, north China and the long-term runoffs in the middle Yangtze River are used to confirm the dry/wet variability in north China and the mid-low Yangtze River over the last two centuries.When considering the data from the last 530 years as a whole, the first two modes of dryness/wetness variability are found in the mid to low sections of two major valleys in eastern China, the Yellow and Yangtze River valleys. These valleys experienced the largest dryness/wetness variability in the history of eastern China. The third and fourth modes are located in northwest and northeast China. The fifth and sixth modes are situated in south and southwest China. However, over the last 500 years the strength and location of principal modes have experienced significant changes. During the 20th century, the first mode is found in the lower Yangtze River valley, the second mode in south China while the third mode is located in the mid-low Yellow River valley. During the 19th century, the first three modes are situated in the mid-low Yellow River, the mid-low Yangtze River and south China, respectively. The first two modes in the 18th century are located in the mid-low Yellow River and the mid-low Yangtze River valleys. The largest change of all modes occurred in the 17th century with the first mode in northeast China, the second mode in northwest China, and the third mode in the mid-low Yangtze River valley. During the 16th century, the first two modes are found in the mid-low Yangtze River and the mid-low Yellow River valleys.In each of the last five centuries, some special dryness/wetness processes are characterized in the mid-low Yangtze River and the mid-low Yellow River (north China). During the 20th century, continuous and severe wetness is experienced in the mid-low Yangtze River in the last two decades. A two-decade wetness period in north China was followed by a severe dry period in the late 19th century. Inter-annual variability, decade and two-decade oscillations of dryness/wetness are experienced in the series of different modes from one century to another. Dry/wet variations in north China and the middle Yangtze River are confirmed by series of data on local precipitation and runoff.  相似文献   

15.
全球海气耦合模式对我国极端强降水模拟检验   总被引:1,自引:1,他引:0       下载免费PDF全文
以1961—1999年我国地面观测逐日降水资料作为观测基础, 初步分析了18个全球海气耦合模式对我国20世纪极端强降水的模拟能力。分析模式对不同级别降水的模拟发现, 各模式模拟的我国1~10 mm小雨日数普遍明显偏多; 10~25 mm中雨日数的模拟结果总体上也以偏多为主, 虽然部分模式能够模拟出我国南方存在的高值中心, 但位置偏北至长江中下游地区; 25~50 mm大雨日数在我国南方明显偏少, 并且大值中心的位置基本都没能模拟出来; 50 mm以上暴雨日数的模拟结果也明显偏小, 除MIROC3.2(hires) 外大部分模式在长江以南地区的结果都未超过2 d; 大部分模式不能正确模拟出我国东部地区大雨日数变化趋势的空间分布。进一步分析各模式对极端强降水的模拟发现:各模式极端强降水阈值明显低于观测; 半数左右的模式模拟出了1961—1999年西北西部极端降水增加的趋势, 个别模式趋势系数的大小与观测相当, 大部分模式对东北和长江中下游地区的模拟结果呈与观测反向的变化趋势, 没有模式能够模拟出我国东部地区存在的东北—华北与华中—长江中下游—华南存在的极端强降水日数增加-减少-增加-减少的空间分布; 大部分模式模拟的极端强降水日数标准差与观测结果比较接近, 这可能主要是由于对观测和各模式使用了同样的判定极端强降水发生的方法。总的来看, 全球海气耦合模式对我国极端强降水的模拟能力还有待进一步改进。  相似文献   

16.
中国主要河流流域极端降水变化特征   总被引:13,自引:0,他引:13       下载免费PDF全文
利用中国1956-2008年逐日降水量资料,以全国主要河流流域为研究区域,分析了年最大日降水量、年暴雨(日降水量≥50.0 mm)日数的多年平均状况及长期变化趋势。分析表明,近53年,全国平均年最大日降水量没有明显的线性变化趋势,但全国范围内多数气象站点年最大日降水量呈现出增加趋势,并存在南方流域增加、北方流域减少的变化趋势,这种变化特征在2001年以来表现更加突出。全国平均年暴雨日数呈不显著的增多趋势,20世纪90年代最多,70年代最少。空间上,我国南北方流域年暴雨日数呈现相反的变化特征,南方流域多呈上升趋势,北方流域呈减少趋势。  相似文献   

17.
Anthropogenic influences on regional climate and water resources over East Asia are simulated by using a regional model nested to a global model. The changes of land use/land cover (LULC) and CO2 concentration are considered. The results show that variations of LULC and CO2 concentration during the past 130 years caused a warming trend in many regions of East Asia. The most remarkable temperature increase occurred in Inner Mongolia, Northeast and North China, whereas temperature decreased in Gansu Province and north of Sichuan Province. LULC and CO2 changes over the past 130 years resulted in a decreasing trend of precipitation in the Huaihe River valley, Shandong Byland, and Yunnan-Guizhou Plateau, but precipitation increased along the middle reaches of the Yangtze River, the middle reaches of the Yellow River, and parts of South China. This pattern of precipitation change with changes in surface evapotranspiration may have caused a more severe drought in the lower reaches of the Yellow River and the Huaihe River valley. The drought trend, however, weakened in the mid and upper reaches of the Yellow River valley, and the Yangtze River valley floods were increasing. In addition, changes in LULC and CO2 concentration during the past 130 years led to adjustments in the East Asian monsoon circulation, which further affected water vapor transport and budget, making North China warm and dry, the Sichuan basin cold and wet, and East China warm and wet.  相似文献   

18.
1 INTRODUCTION Much work has been done addressing the relationship between anomalous climate changes and ENSO in China and the results vary much. For instance, Li et al. (1987) [1] think that the Mei-yu (sustained rain) starts later, lasts shorter and pre…  相似文献   

19.
根据我国东部地区(110°E以东)160个观测站100多a的降水资料对我国东部地区包括华北地区、长江流域和华南地区等100多a的降水变化趋势和降水极端偏多和极端偏少年份的分布进行了分析;并通过计算z指数,实现旱涝面积转化,分析我国东部100多a来的旱、涝范围变化和极端旱、涝年份的分布。结果表明:我国东部地区100多a的降水极端偏多年份随时间分布比较均匀,其间隔在20~40a间。降水极端偏少年份在减少。降水量的变化存在着大约40—50a的震荡周期。夏季降水增加明显,秋季降水下降明显。长江流域的年降水量和我国东部年降水量趋势保持较好的一致性,说明长江流域的降水对我国东部降水的贡献显著,华南区域的降水起次要作用。我国东部近100a来雨涝范围和干旱范围都没有表现出明显的增、减趋势,但存在着明显的年际和年代际振动。我国东部干旱覆盖面积最大的时间主要集中在1930年代以前,1969年以后变化趋势不明显。东北和华北极端干旱年份大都出现在1940年以前,长江流域和华南的极端干旱年份则随时间分布比较均匀。  相似文献   

20.
用1958~2000年NCEP/NCAR再分析资料、中国160站降水量及1958~1998年月平均海温资料分析了中国夏季相邻月份降水异常型的相关特征,及其与大气热源的关系和相关物理过程。结果表明,7月长江流域的降水异常与8月长江和黄河之间地区的降水异常有很好的同号性。7、8月长江流域及附近地区持续性偏旱(涝)与太平洋洋盆尺度的大气热源异常有关,并与前期5、6月热带中、东太平洋大范围的热源异常、青藏高原热源异常也有密切的联系,即当5、 6月赤道东太平洋的大气热源正异常,而赤道中太平洋北侧的热源负异常,则中国7月长江中下游偏涝,8月长江中上游与江淮流域和内蒙古东部偏涝,华南偏旱;反之亦然。前期热带中、东太平洋上空的热源异常中心和与之联系的异常垂直运动中心的西扩和西移,以及青藏高原东部的热源异常中心是影响我国7、8月持续偏旱(涝)的重要环流异常特征。另外,南海-西太平洋海温在前期也已经具有我国夏季长江流域发生旱涝对应的同期海温异常分布型的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号