首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用江西省2002--2007年局地强对流天气过程的多普勒天气雷达产品资料,通过统计分析多普勒天气雷达最大反射率因子、垂直积分液态含水量及其密度、三体散射和中气旋等产品特征,对江西省突发性局地强对流天气的临近预报预警进行研究。结果认为,江西突发性局地强对流天气主要出现在春季和夏季,夏季突发性局地强对流风暴的伸展高度普遍比春季高。最大反射率因子≥55dBz可以作为局地强对流天气预警的临界指标,≥60dBz可以作为局地冰雹预警的临界指标;VIL密度≥2.8g/m^3可以作为局地强对流天气预警的临界指标,≥3.2g/m^3可以作为局地冰雹预警的临界指标,≥4.0g/m^3可以作为较大冰雹预警的临界指标。三体散射是大冰雹的有效判据。风暴内出现中气旋特征,应立即发布强对流天气预警。很多突发性局地强风暴不一定会出现中气旋特征报警,在这种情况下应通过分析径向速度产品来判断中气旋特征。  相似文献   

2.
通过对2005~2016年梧州市强对流天气个例进行分类,统计分析各类强对流天气的主要影响天气系统,并使用MICAPS软件计算统计各类强对流天气物理量参数值,总结出一些物理量参数值在各类强对流天气的分布区间,确定强对流天气类型判断阈值,为梧州市强对流天气的预报预警提供参考。  相似文献   

3.
《气象》2021,(2)
正该书内容主要涵盖三个方面,一是结合最新收集整理的资料,对浙江省强对流天气的气候特征、天气背景、大气环流分型、突发强对流天气的物理机制做了进一步分析和研究,并将一系列强对流天气分类监测和预报预警的对流关键参数特征、环境指标的研究结果进行了总结和梳理;二是详述了近年来浙江省利用多源资料融合等技术在分类强对流天气短时临近监测及预报预警技术方面的研究成果,  相似文献   

4.
对2005-2007年4-9月安徽省冰雹、雷雨大风等强对流天气日数进行统计,分析了基于探空资料计算的不稳定指标与强对流天气发生的关系。结果表明:K指数、A指数、沙氏指数和对流有效位能、归一化对流有效位能和对流抑制能量这几个指标对于强对流天气指示意义较好。基于此结果,挑选K指数、沙氏指数和对流有效位能针对不同季节划分阈值,建立强对流天气潜势预警指标,并利用中尺度模式MM5的数值预报产品计算该指标,对2005-2010年13个强对流天气过程预报结果进行对比检验表明,MM5模式给出的强对流天气潜势预警产品对大多数过程均能起到预警作用。对其中两次强对流天气过程的进一步分析表明,模式具备预报强对流发生潜势的能力,预报结果对强对流天气发生的时间、落区有预警意义。  相似文献   

5.
对2005-2007年4-9月安徽省冰雹、雷雨大风等强对流天气日数进行统计,分析了基于探空资料计算的不稳定指标与强对流天气发生的关系。结果表明:K指数、A指数、沙氏指数和对流有效位能、归一化对流有效位能和对流抑制能量这几个指标对于强对流天气指示意义较好。基于此结果,挑选K指数、沙氏指数和对流有效位能针对不同季节划分闽值,建立强对流天气潜势预警指标,并利用中尺度模式MM5的数值预报产品计算该指标,对2005—2010年13个强对流天气过程预报结果进行对比检验表明。MM5模式给出的强对流天气潜势预警产品对大多数过程均能起到预警作用。对其中两次强对流天气过程分析表明,模式具备预报强对流发生潜势的能力,预报结果对强对流天气发生的时间、落区有预警意义。  相似文献   

6.
2014年5月17日广东强对流天气过程分析   总被引:1,自引:0,他引:1  
利用常规资料及WRF模式对2014年5月17日出现在广东省的强对流天气过程进行了天气尺度背景和中尺度分析,并对此次强对流天气过程范围大、生命史较长的机制进行了分析。结果表明,WRF模式可以较好地模拟出此次强对流天气过程,可有效地用于强对流天气预警预报;此次强对流过程天气尺度背景属于典型的高空槽配合、切变线配合地面锋面,850 h Pa切变线配合地面锋面共同作用触发了强对流天气发生;环境场强的垂直风切变、强对流雷暴内部有组织的垂直上升和下沉运动是此次强对流天气维持较长生命史的主要原因。  相似文献   

7.
传统多普勒天气雷达强对流灾害性天气监测采用固定阈值判别法给出强风暴的冰雹闪电灾害预警结果,该方法不适用于不同经纬度、季节和复杂地形条件下的强对流天气识别预警。本文利用循环递归的区域生长法对TITAN算法进行改进,从而快速识别三维强风暴单体及其雷达特征物理量;使用多普勒天气雷达和TRMM星载气象雷达的历史观测数据反演河北石家庄地区春夏两季复杂地形条件下的强风暴灾害性天气Logistics多元线性回归概率预警模型。对发生在河北石家庄夏季的一次强飑线天气和发生在春季的一次超级多单体风暴天气进行冰雹闪电灾害性天气识别预警实验,并与传统算法进行误差对比分析。实验结果表明:与传统算法对比,该方法对强风暴天气识别预警的定位精度较高,并且其漏报率和虚报率较低,有助于快速识别预警强对流灾害性天气。   相似文献   

8.
新一代天气雷达与强对流天气预警   总被引:44,自引:29,他引:44  
简要介绍了对流风暴的分类、对流风暴的强弱和强对流天气的多普勒天气雷达识别和预警技术,以及新一代天气雷达对强对流风暴预警水平的改进。  相似文献   

9.
正1强对流天气的多普勒天气雷达探测和预警?俞小鼎(1卷3期)引言强对流天气是造成气象灾害的主一,主要包括冰雹、龙卷、雷雨大风和达从它在半个多世纪前开始应用于气象直是监测和预警强对流天气的主要工发射一系列脉冲电磁波,电磁波遇到云会向四面八方散射,其中后向散射波收。传统天气雷达只能提取回波中的强子)信息,而多普勒天气雷达除了提取介绍了对流风暴的分类、主观雷达识别和预警技术以及主要客观产品。  相似文献   

10.
豫北一次局地雹暴天气的预警特征和触发机制   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规气象观测、多普勒雷达、卫星资料和区域自动站观测资料及NCEP再分析资料,对2011年6月11日豫北局地强对流天气的预报预警特征和触发机制进行分析。结果表明:局地强对流天气是在东北冷涡背景下产生的,高低层中尺度影响系统(槽、切变线、大风速轴)交汇处右侧是强对流发生潜势区。局地强对流天气发生前,CAPE较大,0-6 km垂直风切变达到中等偏强,有利于超级单体的形成和发展。高空冷平流南侵、低层暖平流北上,有利于大气对流不稳定度进一步加大。中-β尺度强对流云团在东北冷涡槽底后部形成,其发展演变对局地强对流天气预报预警有参考意义。强对流回波经历了细胞状、带状发展期和块状减弱期。回波带南侧形成的超级单体造成了局地强风雹天气,冰雹发生时伴有“三体散射”现象。冷空气和地面辐合线是强对流天气的主要触发机制;地面辐合线对强对流天气还有提示作用。  相似文献   

11.
基于天气雷达、地面和探空观测资料、NCEP再分析资料、FNL 数值预报产品,应用强对流天气分类识别技术和短时临近预报技术,开展风暴临近预报、强对流天气分类预警、基于数值预报的强风暴潜势诊断等研究,获得大理、丽江、西双版纳等高原山地机场及周边区域强降水、雷暴、大风、冰雹等灾害性天气的0~2h实时定量预报产品和0~12h强对流天气潜势预报产品,建立可业务运行的机场强对流天气短时临近预报系统。通过检验,证明该预报系统有较好的强对流天气预报预警能力,满足机场业务需求。  相似文献   

12.
交叉相关算法在强对流天气临近预报中的应用   总被引:4,自引:0,他引:4  
利用"雨燕"临近预报系统的雷达回波外推算法,对三次强对流个例的3 km CAPPI反射率因子、回波顶和垂直累积液态含水量进行0~1小时外推预测,将预测结果和组合阈值比较进行强对流天气预警区域预报试验。资料来源于CINRAD-SB雷达基数据经RPG算法处理得到的雷达产品数据。所用的方法是在扩展后的交叉相关追踪算法基础上实现雷达回波移动预测。试验结果表明:3 km CAPPI反射率因子、回波顶和垂直累积液态含水量雷达产品与实况有较好的吻合,能较好地预报出回波的形状、变化趋势和移动方向,回波的范围、位置和强度中心与实况相似,外推时间越短,预报效果越好。交叉相关追踪算法外推得到的雷达回波结果在0~1 h内是可用的;外推预测结果经过组合阈值的过滤后,得出的强对流天气预警区域预警结果也是可行的,对强对流天气临近预报有一定指示意义。  相似文献   

13.
晴空回波在强对流天气临近预报中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
该文介绍了利用多普勒天气雷达资料判断环境风场辐合、辐散的两种方法:径向速度图像特征定性识别法和EVAD技术定量计算法,并结合2009年8月两次强对流天气过程详细介绍了两种方法的具体应用。统计分析了2005-2008年5-9月晴空回波特征以及不同高度散度和对流出现时间的关系,晴空回波出现在距离雷达中心50km范围之内,反射率因子多在10~20dBZ,径向速度大部分为-5~5m/s;强对流天气出现之前,对流层低层均会出现辐合,可以利用低层连续5个体扫出现辐合作为环境场具有辐合条件的指标。根据统计结果建立了强对流天气临近预警系统,该系统在2009年6-8月试运行,预警命中率为88.9%,虚警率为29.8%,临界成功指数为64.5%,辐合提前对流天气出现时间平均为7.1h,对降低强对流天气漏报率,提高强对流天气的临近预报水平有重要意义。  相似文献   

14.
赵廷龙  汪克付  王莘芳 《气象》1998,24(1):39-42
利用气象信息综合处理分析平台(MICAPS)对基本资料进行和加工处理,运用天气图,物理量场,卫星云图和雷达回波资料,制作盛夏午后对流性天气的临近预报,通过警报网,无线寻呼和168信息台(或121)开展不同时效的预警服务,由于有效地改进了对流性天气预制作流程与发布方式,在1996年和1997年夏季预报服务实践检验中,效果较好。  相似文献   

15.
张莹  袁志勇  徐春阳  武敬峰  徐萌 《气象科学》2012,32(S1):149-154
短时强降水作为强对流的一种天气现象,是宿迁市较为常见的灾害性天气之一,常常对工农业生产、交通航运、建筑设施等造成影响。然而,预报一直是难点,因此如何利用现有的气象资料,开展短时强降水预报服务,并形成日常业务流程,对提高预报预警和防灾减灾能力十分重要。本文利用自动站逐时雨量资料、Micaps高低空和地面资料、NECP 1°× 1°的再分析资料和T213数值预报产品,基于Visual Basic语言开发了宿迁市短时强降水历史个例查询与潜势预报平台,以提高短时强降水预报质量,减少或避免气象灾害给社会经济造成的损失。  相似文献   

16.
短时强降水历史个例查询与潜势预报平台   总被引:1,自引:1,他引:0  
短时强降水作为强对流的一种天气现象,是宿迁市较为常见的灾害性天气之一,常常对工农业生产、交通航运、建筑设施等造成影响。然而,预报一直是难点,因此如何利用现有的气象资料,开展短时强降水预报服务,并形成日常业务流程,对提高预报预警和防灾减灾能力十分重要。本文利用自动站逐时雨量资料、Micaps高低空和地面资料、NECP 1°× 1°的再分析资料和T213数值预报产品,基于Visual Basic语言开发了宿迁市短时强降水历史个例查询与潜势预报平台,以提高短时强降水预报质量,减少或避免气象灾害给社会经济造成的损失。  相似文献   

17.
强对流天气短时临近预报业务技术进展与挑战   总被引:20,自引:5,他引:15  
强对流天气短时临近预报业务是国家防灾减灾、重大社会活动和精细化天气预报的迫切需要。虽然我国强对流天气短时临近预报业务已经取得了巨大进展,但与国外先进水平相比还有不少差距。本文总结了近年国内外强对流天气短时临近预报业务现状、技术进展、目前国内的技术支撑状况和所面临的挑战,并提出了相应的应对措施。目前强对流天气短时临近预报技术仍然主要是外推预报技术、数值预报技术和概念模型预报技术等,但快速更新循环的高时空分辨率数值模式预报和新一代静止气象卫星资料将在强对流天气短时临近预报中发挥重要作用。强对流天气监测、分析和机理研究是强对流天气短时临近预报的重要基础;先进的外推预报方法同快速更新循环的高时空分辨率数值模式预报以及二者的融合是未来强对流天气短时临近预报的重要发展方向。  相似文献   

18.
针对黔南州2022年4月24日午后到夜间的一次强对流天气过程,利用实况资料和都匀雷达ROSE2.0在短时强降水、冰雹、雷暴大风方面的监测和预警产品对比检验,结合本地短时临近预报业务应用效果分析,发现:受地形影响都匀雷达ROSE2.0估计降水在大雨以下量级表现较好,但对暴雨以上量级估计值偏小,没有明显短时强降水报警体现,本地化应用门限值降低约3成左右设置更为合理;都匀雷达ROSE2.0对冰雹预警落区指示和命中率较高,但时间提前量平均仅9分钟,对雷暴大风预警仍然有难度,剖面图分析能更好地识别雷暴大风指标。另外,雷达ROSE2.0软件强天气预警算法得到进一步优化,应融入一体化平台等快速支撑预警业务应用。  相似文献   

19.
本文通过对发生在阳泉的强对流天气的历史个例分析,得出其天气分型,结合强对流天气发生发展条件分析以及卫星云图和多普勒雷达资料的应用,得出一些强对流天气预报指标,为做好强对流天气的预报服务提供参考。  相似文献   

20.
为实现短时临近预警业务集约化智能化运行和管理,采用B/S结构模式及Web GIS技术开发了省、市、县三级一体化的短时临近天气预警集约化业务系统。该系统集天气监控、预报预警产品制作、服务分发和业务管理为一体,具有业务整体性强、集约化程度高、有一定智能化功能等特点。系统开发集成的主要关键技术包括突发天气短时临近预报概念模型的建立,预警产品的制作与订正,强对流天气区的自动识别和追踪技术等。目前该系统已投入业务运行,成为广西区、市、县三级短临监测、预报一体化平台,实现了各级台站之间气象信息的快速交流共享,达到上下级台站短时天气快速联防互动的效果,预警产品制作比旧的业务系统效率更高效,流程更规范,生成的产品内容更标准,上下级业务互动更快速。该系统推进了气象业务的集约化、智能化运行及维护,服务器布置于省局,客户端以网页方式推送、展示,用户通过浏览器就能完成天气监测及预报预警产品制作到发布的所有流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号