首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
基于精细化降水分布的山洪气象条件分析   总被引:1,自引:0,他引:1       下载免费PDF全文
张亚萍  沃伟峰  刘德  方德贤  廖峻 《气象》2013,39(1):101-111
提出了天气雷达联合地面雨量计估测降水的局地分级平均校准方法.以该方法得到的精细化降水分布(0.01°×0.01°)为基础,对重庆綦江石角流域(面积707 km2)2008年5月28日、2009年8月5日和2010年6月23日的3次洪峰过程进行了山洪气象条件分析.结合由数字高程模型(Digital Elevation Model,DEM)资料计算的流域河道出口距离分布,提出了流域出口无损径流序列(假设降水全部转换为径流)的预报方法.结果表明:与局地平均校准法相比,局地分级平均校准法对强降水的估计效果更好.无损径流预报对预测山洪发生的可能性具有参考意义.  相似文献   

2.
不同校准方法检验雷达定量估测降水的效果对比   总被引:2,自引:0,他引:2  
应用雷达低仰角基本反射率资料和地面加密自动站降水量资料,采用最优化方法,根据天津地区降水特点和不同降水类型,建立适用本地的雷达Z-I关系。经实际应用检验,积混降水类型Z-I关系具实用性。在天津本地化Z-I关系基础上,通过了对比分析6种不同校准方法在天津夏季降水估测中的检验效果。结果表明:Z-I关系校准法和最大集成法对降水的估测偏高,误差较大;最优插值法的估测精度最高,平均绝对误差和均方根误差最小;但计算不同校准方法与实况相关性表明,变分校准法的估测效果与雨量计降水量的相关性最好。同时,所有估测校准法对小雨量级的降水均出现了不同程度的偏高估测。  相似文献   

3.
东高红  刘黎平 《气象》2012,38(9):1042-1052
利用新一代天气雷达基数据资料和天津三次不同类型降水天气过程的降水量资料,采用变分校准方法,以校准区域内所有雨量计校准雷达得到的估测降水场作为"真值场",对比分析14种不同密度雨量计网校准雷达估测降水的效果,并对雨量计网中单个雨量计站点对校准雷达的贡献进行试验分析。结果表明:(1)参加校准的雨量计密度较小时,雷达估测降水的误差较大,估测效果不好;随校准雨量计密度的不断加大,雷达估测降水的偏差明显减小、估测精度不断提高并逐渐趋于稳定。(2)校准不同类型降水需要的雨量计密度不同,这与降水的性质有关;当校准雷达估测降水的效果与"真值场"的相当时,所需的雨量计密度为121 km2·部-1。(3)在雨量计校准网中任意增加降水量不为零的站点,会在增加的站点周围出现估测偏差(高估或低估),偏差的大小与站点降水量相对于其周围雨量计平均值的大小有关、偏差的影响范围则与站点周围雨量计的分布密度有关。(4)任意增大(减小)雨量计校准网中单个站点的降水量会使雷达对站点周围降水的估计偏高(偏低),高(低)估的程度及影响范围与站点降水量增大(减小)的多少及站点周围雨量计分布密度有关,而与降水类型及降水随时间的演变无关。  相似文献   

4.
雷达与雨量计联合估测降水的相关性分析   总被引:9,自引:6,他引:3       下载免费PDF全文
在对比分析质量控制前后雷达估测降水量与自动雨量计降水量之间相关性的基础上,采用雷达-雨量计联合校准方法,对14种不同密度雨量计校准雷达估测降水的效果进行分析。结果表明:在使用雷达资料和雨量计资料前有必要对资料的质量进行分析与控制。联合雨量计校准雷达能明显提高雷达对降水的估测能力;采用不同密度雨量计校准雷达,随着校准雨量计密度的加大,雷达估测降水的精度不断提高并趋于稳定。校准雷达的效果及所需雨量计密度与降水类型有关,当校准效果相同时,积云强降水过程需要的雨量计密度最大,积混对流性降水过程次之,层云稳定性降水过程需要的雨量计密度最小。不同方法的校准效果不同,卡尔曼滤波方法适合于对稳定性降水的校准,或在雨量计密度低的地区对雷达进行校准;变分校准法和最优插值法的校准效果相当,适合对积混对流性降水的校准,或在雨量计密度高的地区对雷达进行校准。  相似文献   

5.
天气雷达定量估测降水量不同方法效果评估   总被引:9,自引:3,他引:9  
将黄河淮河洪水暴雨监测预报系统降水估测模式得出的规则网格点上的降水与雨量计实测值进行比较,结果表明:将地面雨量计值作为真值,则联合校准法和最优插值校准法得出的降水量计算精度最高,变分法得到的结果不是很理想,卡尔曼滤波校准法和平均校准法的计算精度低于联合校准法和最优插值校准法,Z-I关系法的精度最低。  相似文献   

6.
应用雷达拼图数据估测降水试验   总被引:7,自引:3,他引:4  
利用2008年6月5~7日广东省新一代天气雷达网(广州、梅州、韶关、阳江、深圳及汕头6部雷达)的雷达原始体扫资料及自动雨量站资料,对广东省3 km高度上的雷达网系统观测值差异进行了分析,发现广州雷达的观测值比周围雷达偏高1~3 dBz,梅州雷达比其周围雷达的观测值偏低1~2 dBz。用Z-R关系和最优插值校准法分别进行6 min和1 h估测降水,并用面雨量偏差和均方根误差对该次降水估测试验做了简单评估。结果显示:6 min定量估测降水,两种方法都会低估,面雨量越大,估测效果越好;对于1 h定量估测降水,各种估测方法都有偏高或偏低情况,但普遍偏高,其中用先累加再用最优插值校准法校准的雷达-雨量计联合估测方法效果最好;短时降水估测可以很好地反映降水过程变化,而长时间降水估测可以较准确估测降水大小。  相似文献   

7.
张鹏  刘西川  周则明  宋堃  杨平吕 《气象》2023,(2):157-169
为减小天气雷达反演降水场与地面实际降水的偏差,提出了利用贴近地面的微波链路对天气雷达降水场实施校准的方法,包括变分校准法、卡尔曼滤波校准法、平均校准法和克里金校准法。为验证校准效果,在两次不同类型的实际降水过程中,利用两条微波链路,对S波段天气雷达反演的降水场进行了校准,校准结果与地面雨量计实测值进行了比较,结果表明:四种校准方法均取得了一定的校准效果,改善了降水过程Ⅰ中强降水的低估问题和过程Ⅱ中弱降水的高估问题。校准后的雨强分布与雨量计测值的一致性得到提升,统计误差明显降低,改善程度由高至低依次为平均误差、均方根误差、平均绝对误差。综合各种校准方法在两次降水过程中的表现,克里金校准法的效果相对较好,变分校准法和平均校准法的效果优于卡尔曼滤波校准法。对平均误差和均方根误差改善幅度最大的是克里金校准法,对平均绝对误差改善幅度最大的为变分校准法。平均校准法和卡尔曼滤波校准法得到的校准因子为某一时次的区域平均校准因子,而克里金校准法和变分校准法能够得到随时间和空间位置变化的校准因子场。研究结果表明微波链路是校准雷达降水场的有效手段。  相似文献   

8.
雷达定量降水估测(QPE)是短时临近预报的关键部分,在定量降水预报(QPF)、强降水预警、城市积水内涝、地质山洪灾害、精细化天气服务等方面具有重要作用。利用京津冀地区雷达定量降水估测资料和逐时自动气象站降水观测数据,分析了2011—2016年夏季京津冀地区雷达定量降水估测的误差空间分布特征,并重点提出了一种新的雷达本地化定量气候校准算法。结果表明,京津冀地区雷达定量降水估测较好地反映了总降水量东北—西南带状分布特征,但西北部山区、东北部山区及西南部山区估计偏弱,东北部山前地带估计偏强,西北部存在虚假降水估计,而北京市城区估计最为准确。利用雷达本地化定量气候校准算法对1 h雷达定量降水估测进行气候尺度上的约束订正,检验结果表明,经过校准后的雷达定量降水估测偏差(BIAS)、平均绝对误差(MAE)、均方根误差(RMSE)和均方根相对误差(RRMSE)均减小。绝大部分站点偏差减小幅度超过50%,京津冀东部及南部平原地带平均绝对误差、均方根误差和均方根相对误差减小幅度在20%左右,而北部及西南部山区误差减小幅度相对较小。降水个例检验结果表明,经过雷达定量气候校准后的雷达定量降水估测强度更接近自动气象站观测的降水量级,且降水结构细致,偏差、平均绝对误差和均方根误差均减小,与自动气象站观测降水的相关系数增大,因此该算法有助于改进雷达定量降水估测的准确度。   相似文献   

9.
采用基于自适应相关函数的最优插值法对四川广元的雷达定量降水估测进行实时订正并评估其效果。结果表明,该方法有效改善了雷达定量降水估测对弱降雨高估、对强降雨低估的问题,提高了降水估测精度,同时可以更好地模拟降水空间分布特征和时空变化;研究建立的自适应相关函数模型可以根据测站分布情况动态计算最优权重因子,降低了雷达-雨量计联合校准法对测站分布的要求,便于在不同地区开展实际业务应用。   相似文献   

10.
沂沭河流域不同多普勒雷达降水量估算方法的效果评估   总被引:3,自引:0,他引:3  
利用2005年和2006年九次大型降雨过程的多普勒雷达体扫复合仰角的回波强度资料及相应的雨量计观测资料, 通过改进的最佳窗概率配对法、 遗传算法和最优化法分别得到沂沭河流域多普勒雷达降水Z-R关系, 对不同算法的优化结果和降水误差进行比较分析及验证, 并将最优的Z-R关系用于估算区域降水量。同时利用雨量计资料采用卡尔曼滤波、 变分等6种估测方法进行面雨量估算的校正, 并对上述几种方法的估测精度进行比较分析。结果表明: 将地面雨量计观测值作为真值, 在站点降水的估测上, 卡尔曼最优插值法和卡尔曼变分法估测的降水量计算精度最高, 最优插值法和变分法次之, 卡尔曼滤波法和平均校准法的计算精度要低于最优插值和变分法, Z-R关系法的精度最低。在区域面降水量的估测上, 雷达探测到的降水量的分布形势与雨量计得到的降水场比较一致, 但中心的降水强度上有较大的偏差。Z-R关系法的平均相对误差为70.51%。经过雷达雨量计联合校正后, 使估算精度明显提高, 其中卡尔曼最优法计算精度最高。平均校准法、卡尔曼滤波法、最优插值法、变分法、卡尔曼最优法和卡尔曼变分法的平均相对误差分别为: 16.55%、16.27%、13.44%、13.86%、13.16%、13.51%。  相似文献   

11.
With the development of urbanization, whether precipitation characteristics in Guangdong Province, China, from 1981 to 2015 have changed are investigated using rain gauge data from 76 stations. These characteristics include annual precipitation, rainfall frequency, intense rainfall(defined as hourly precipitation ≥ 20 mm), light precipitation(defined as hourly precipitation ≤ 2.5 mm), and extreme rainfall(defined as hourly rainfall exceeding the 99.9 th percentile of the hourly rainfall distribution). During these 35 years, the annual precipitation shows an increasing trend in the urban areas.While rainfall frequency and light precipitation have a decreasing trend, intense rainfall frequency shows an increasing trend. The heavy and extreme rainfall frequency both exhibit an increasing trend in the Pearl River Delta region, where urbanization is the most significant. These trends in both the warm seasons(May-October) and during the pre-flood season(April-June) appear to be more significant. On the contrary, the annual precipitation amount in rural areas has a decreasing trend. Although the heavy and extreme precipitation also show an increasing trend, it is not as strong and significant as that in the urban areas. During periods in which a tropical cyclone makes landfall along the South China Coast, the rainfall in urban areas has been consistently more than that in surrounding areas. The precipitation in the urban areas and to their west is higher after 1995, when the urbanization accelerated. These results suggest that urbanization has a significant impact on the precipitation characteristics of Guangdong Province.  相似文献   

12.
概率密度匹配法对中国区域卫星降水资料的改进   总被引:8,自引:2,他引:6       下载免费PDF全文
为考察概率密度匹配法 (PDF方法) 对中国区域卫星反演降水产品系统误差订正的适用性,基于逐日和逐时我国地面观测降水量资料,引入PDF方法,分别对逐日0.25°×0.25°水平分辨率和逐时0.1°×0.1°水平分辨率的CMORPH (Climate Prediction Center Morphing Technique) 卫星降水产品的系统误差进行订正。在分析CMORPH卫星降水产品误差特征的基础上,根据两种资料不同的时空分辨率和误差特点,调整概率密度匹配时选取样本的时间和空间范围,设计相应的订正方案。评估结果表明: PDF方法订正后, 两种分辨率卫星降水资料在中国区域系统误差均显著减小,达到了理想的订正效果。在我国站点稀疏的西部地区,订正后的CMORPH卫星降水产品仍保持卫星观测的降水空间分布,降水量也明显接近于地面观测降水量。可见,PDF方法是中国区域卫星反演降水产品系统误差订正的一种有效方法。  相似文献   

13.
河北省西南部逐时降水气候特征分析及雨量产品色标修订   总被引:2,自引:1,他引:1  
利用河北省中南部1999~2005年95个气象站4~10月自记雨量资料,初步分析了逐时降水的统计学特征量,得到了逐时降水的空间分布特征和统计学基本规律:河北省中南部逐时降水具有明显的地理和季节分布特征,强度一般在早晨或傍晚最大,上午最弱.根据逐时降水量级分布情况,调整雷达雨量产品色标设置:小值区间间隔小,大值区间间隔大,突出显示小值降水的层次,跟踪降水中心发生、发展及移动,对降水精细化预报有一定的指导意义.  相似文献   

14.
选取我国东南沿海热带气旋登陆数目多、经济发达的浙江和福建两省,利用国家级地面气象站逐小时降水观测资料,结合热带气旋降水客观分离方法,对1956~2012年(共57年)浙、闽两省沿海登陆热带气旋降水开展客观分离,统计分析热带气旋登陆期间降水精细化时空分布特征。结果表明:热带气旋平均路径在登陆前6小时至登陆后24小时呈西北行,累积降水具有明显非对称分布特征,与主要水汽辐合区相吻合,登陆后24小时至48小时的降水分布与鄱阳湖水体以及局地地形有密切联系;伴随登陆进程,降水分布呈现显著变化,登陆前,浙、闽两省降水较强;登陆后,降水范围向内陆扩展到浙、闽两省以外地区;登陆点聚类分析指出,所有类别的较强降水时段均位于登陆前12小时至登陆后6小时,但不同类别的降水分布和演变特征具有显著差异,这种差异与局地地形和热带气旋环流所处位置关系密切;小时强降水统计分析显示,伴随着登陆进程强降水频次分布逐渐变化和向内陆地区推进,高频次强降水主要出现在登陆前、后6小时的浙、闽两省沿海地区,且以两省交界附近地区最为集中,与该地区明显的高大地形分布有着密切的关系。两省各台站由登陆热带气旋带来的小时降水极值差异较大,从10到143 mm均有分布,大部分极值在30至60 mm之间。其中,极值大于50 mm的站点主要分布在沿海地区,在浙、闽交界处较为集中,与小时强降水的频次分布一致。  相似文献   

15.
利用2005—2018年125个国家级台站小时降水观测数据研究云南小时降水时空分布特征。结果表明:云南年总降水量、不同持续时间降水量、极端强降水量及降水日变化空间分布差异很大。年降水量自西北向南增加,雨强自北向南增强,降水时长西部大于东部、南部略大于北部,年降水量受降水时长和雨强共同影响,降水时长影响最强,雨强影响较弱,这种特征在滇西北最突出,但滇东北的降水量与雨强相关更好。云南大部夜雨量多于昼雨量,滇东北和北部边缘夜雨特征最显著;降水日变化特征在云南北部为夜间单峰,西部边缘为清晨单峰,中部为夜间与午后峰值相当的双峰,南部也为夜间和午后双峰,但南部不同区域间主峰和次峰出现时间不同。云南南部降水贡献以短、中历时降水为主,北部则以长、超长历时降水为主。云南短时强降水发生次数的空间分布表现为自西北向东南增加;年发生站次数具有增加趋势,日变化特征为显著单峰,多在傍晚至入夜出现,且极端短时强降水更易在凌晨出现。这些小时降水时空分布特征很大程度上代表了低纬高原地区的降水特征。由于低值天气系统多影响低纬高原中北部,热带天气系统多影响南部,且低纬高原地形复杂,局地热力条件差异明显,这些因素造成该区域小时降水时空分布特征差异显著。  相似文献   

16.
利用北京地区1977-2013年18个站点逐小时降水资料,将小时降水分为弱降水(第50百分位值以下)、中等强度降水(第50至90百分位值)以及强降水(第90百分位值以上)3个等级,对北京地区山区、郊区以及城区夏季不同强度等级降水变化特征进行了深入细致的分析。结果表明,北京地区夏季降水量存在显著的减少趋势,这种减少趋势主要是由于弱降水和中等强度降水的显著减少引起的,强降水没有表现出明显的增多或减少趋势;与郊区相比,2004年之后城区的强降水对夏季总降水量的贡献越来越大而弱降水的贡献减小。在降水日变化上,不同地区、不同等级的降水存在差异。弱降水存在清晨和夜间双峰值特征,中等强度和强降水只存在夜间单峰值特征。清晨峰值时刻,山区、郊区和城区弱降水都表现出一致的显著减少趋势;夜间峰值时刻,山区的各等级降水变化不显著,而在2004年之后,城区弱降水少于郊区,强降水则多于郊区。北京地区降水过程不对称性特征(降水过程峰值前后差异性)十分明显,其中以强降水的不对称性最强,相对于郊区和山区来说,城区强降水过程的不对称性有增大的趋势。  相似文献   

17.
利用华南地区1966—2005年5—10月台站小时降水和日降水以及气温观测资料,分析了极端降水与气温的对应关系。结果表明,气温低于25℃时,日极端降水强度与小时极端降水强度均随气温升高而升高,且越极端的降水出现向两倍Clausius-Clapeyron (CC)变率转换的气温越低;气温高于25℃时,日极端降水强度和小时极端降水强度出现不同程度的下降,其中前者下降更为显著。考察降水持续时长发现,气温高于25℃时,华南地区小时极端降水随气温的下降主要由短持续性降水所贡献;气温高于28℃时几乎无长持续性降水发生。  相似文献   

18.
一种可用于登陆台风定量降水估计(QPE)方法的初步建立   总被引:4,自引:2,他引:4  
借鉴Adler-Negri[1]、Goldenberg等[2]及李俊等[3]的工作,通过对三者工作的有机结合及完善,针对登陆台风GMS-5 IR1TBB特征及逐时观测雨量强度及水平分布特点,初步建立一种可用于登陆台风的定量降水估计(QPE)方法,并结合0104号登陆台风“尤特”个例,从各站点逐时雨量、过程雨量以及区域面雨量角度,分析检验了初步建立的云估计降水方法的定量估计能力。结果表明:(1)所建QPE方法可以反映出登陆台风逐时降水的水平分布不均匀性,可以分离出对流降水和层云降水,但对大于15.0 mm/h的降水强度估计能力有限。(2)51.7%的站点过程雨量相对误差小于20%,过程雨量相对误差小于40%的站点数占总站点数的75.9%,表明所建QPE方法对过程雨量的估计能力还是相当强的,这也间接反映了其对逐时雨量较强的估计能力。(3)所建QPE方法对逐时面雨量也具有一定的估计能力,可以为抗旱、防洪决策服务提供一定的参考。  相似文献   

19.
1961-2000年西南地区小时降水变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
根据西南地区112个站点1961-2000年逐时降水资料,分析了不同季节降水时数、小时雨强、极端强降水时数和极端强降水强度的变化趋势.从降水时数变化来看,夏季西南大部分地区如四川盆地西部、云南、贵州南部等地总降水时数有减少趋势,四川盆地东部和川西高原总降水时数增加;整个区域平均趋势为-0.9%/10a.相应地,极端强降...  相似文献   

20.
Compared with daily rainfall amount, hourly rainfall rate represents rainfall intensity and the rainfall process more accurately, and thus is more suitable for studies of extreme rainfall events. The distribution functions of annual maximum hourly rainfall amount at 321 stations in China are quantified by the Generalized Extreme Value(GEV) distribution, and the threshold values of hourly rainfall intensity for 5-yr return period are estimated. The spatial distributions of the threshold exhibit significant regional diferences, with low values in northwestern China and high values in northern China, the mid and lower reaches of the Yangtze River valley, the coastal areas of southern China, and the Sichuan basin. The duration and seasonality of the extreme precipitation with 5-yr return periods are further analyzed. The average duration of extreme precipitation events exceeds 12 h in the coastal regions, Yangtze River valley, and eastern slope of the Tibetan Plateau. The duration in northern China is relatively short. The extreme precipitation events develop more rapidly in mountain regions with large elevation diferences than those in the plain areas. There are records of extreme precipitation in as early as April in southern China while extreme rainfall in northern China will not occur until late June. At most stations in China, the latest extreme precipitation happens in August–September. The extreme rainfall later than October can be found only at a small portion of stations in the coastal regions, the southern end of the Asian continent, and the southern part of southwestern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号