首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分析了一个1/10°的涡分辨率全球环流模式LICOM(LASG/IAP Climate system Ocean Model)对吕宋海峡附近海洋环流的模拟能力。结果表明,模拟的吕宋海峡附近上层环流及输运具有明显的季节变化特征,除6月是东向净流出外,其余月份均为西向流入,冬季流量最大。年平均流量在-3.76 Sv(1 Sv=106 m3/s),其中上层(600 m以上)流量起主要贡献,为-3.60 Sv,与目前已有的研究结果基本一致。南海通过6个海峡完成与外界的水交换,其中吕宋海峡和巴拉巴克海峡是大洋水进入南海的主要通道,其余海峡均以流出为主,流出量最大的是台湾海峡(1.99 Sv),其次是卡里玛塔海峡(1.03 Sv)。进一步分析表明,由季风引起的埃克曼输送量约占吕宋海峡流量的11%,而由季风引起的吕宋海峡压力梯度形成的西向的地转流对吕宋海峡的输运起支配作用。作为黑潮源头的太平洋北赤道流流量对吕宋海峡输运的季节变化也有一定影响。  相似文献   

2.
The upper layer, wind-driven circulation of the South China Sea (SCS), its through-flow (SCSTF) and the Indonesian through flow (ITF) are simulated using a high resolution model, FVCOM (finite volume coastal ocean model) in a regional domain comprising the Maritime Continent. The regional model is embedded in the MIT global ocean general circulation model (ogcm) which provides surface forcing and boundary conditions of all the oceanographic variables at the lateral open boundaries in the Pacific and Indian oceans. A five decade long simulation is available from the MITgcm and we choose to investigate and compare the climatologies of two decades, 1960–1969 and 1990–1999.The seasonal variability of the wind-driven circulation produced by the monsoon system is realistically simulated. In the SCS the dominant driving force is the monsoon wind and the surface circulation reverses accordingly, with a net cyclonic tendency in winter and anticyclonic in summer. The SCS circulation in the 90s is weaker than in the 60s because of the weaker monsoon system in the 90s. In the upper 50 m the interaction between the SCSTF and ITF is very important. The southward ITF can be blocked by the SCSTF at the Makassar Strait during winter. In summer, part of the ITF feeds the SCSTF flowing into the SCS through the Karimata Strait. Differently from the SCS, the ITF is primarily controlled by the sea level difference between the western Pacific and eastern Indian Ocean. The ITF flow, consistently southwestward below the surface layer, is stronger in the 90s.The volume transports for winter, summer and yearly are estimated from the simulation through all the interocean straits. On the annual average, there is a ∼5.6 Sv of western Pacific water entering the SCS through the Luzon Strait and ∼1.4 Sv exiting through the Karimata Strait into the Java Sea. Also, ∼2 Sv of SCS water enters the Sulu Sea through the Mindoro Strait, while ∼2.9 Sv flow southwards through the Sibutu Strait merging into the ITF. The ITF inflow occurs through the Makassar Strait (up to ∼62%) and the Lifamatola Strait (∼38%). The annual average volume transport of the ITF inflow from the simulation is ∼15 Sv in the 60s and ∼16.6 Sv in the 90s, very close to the long term observations. The ITF outflow through the Lombok, Ombai and Timor straits is ∼16.8 Sv in the 60s and 18.9 Sv in the 90s, with the outflow greater by 1.7 Sv and 2.3 Sv respectively. The transport estimates of the simulation at all the straits are in rather good agreement with the observational estimates.We analyze the thermal structure of the domain in the 60s and 90s and assess the simulated temperature patterns against the SODA reanalysis product, with special focus on the shallow region of the SCS. The SODA dataset clearly shows that the yearly averaged temperatures of the 90s are overall warmer than those of the 60s in the surface, intermediate and some of the deep layers and the decadal differences (90s  60s) indicate that the overall warming of the SCS interior is a local effect. In the simulation the warm trend from the 60s to the 90s in well reproduced in the surface layer. In particular, the simulated temperature profiles at two shallow sites at midway in the SCSTF agree rather well with the SODA profiles. However, the warming trend in the intermediate (deep) layers is not reproduced in the simulation. We find that this deficiency is mostly due to a deficiency in the initial temperature fields provide by the MITgcm.  相似文献   

3.
A Note on the South China Sea Shallow Interocean Circulation   总被引:14,自引:1,他引:14  
1. IntroductionThe South China Sea (SCS) has many channelsconnecting with the outer oceans/seas (Fig. 1). Thewidest and deepest channel is the Luzón Strait, whichis the main entrance to the SCS from the WesternPacific Ocean, having a sill depth of about 2500 m.On the north, the Taiwan Strait connects with theEast China Sea, with a sill depth of about 70 m. Inthe vicinity of Mindoro Island, there are a numberof channels connecting the SCS with the Sulu Sea.The main channel is the M…  相似文献   

4.
Wind data from NCEP and hydrographic data obtained during 8–27 March 1992 have been used to compute circulation in the Luzon Strait and the northern South China Sea using three-dimensional diagnostic models with a modified inverse method. Numerical results are as follows: the main Kuroshio is located above 800 m levels. It has two intrusive branches of the Kuroshio in the areas above 400 m. One part intrudes anti-cyclonically northwestward, then flows through the area above 200 m southwest of Taiwan and into the Taiwan Strait. The other part intrudes westward and flows cyclonically in the areas north of the cyclonic eddies, then flows southward through the southern boundary of the region. The net westward volume transport (VT) through Section at 120°15′E between Luzon Island and Taiwan Island is about 3.0 Sv, net northward VT through northern boundaries into the Taiwan Strait is about 1.4 Sv and net southward VT through southern boundaries is about 1.6 Sv, which finally flows into the Karimata and Mindoro Straits. In the areas above 400 m east of 117°15′E, the circulation is mainly dominated by the basin-scale cyclonic gyre, which consists of two cyclonic eddies. However, in the areas below 400 m east of 119°00′E, the circulation is mainly dominated by basin-scale anti-cyclonic gyre. The joint effect of baroclinity and relief and interaction between wind stress and relief are important in different area respectively for the pattern of the depth-averaged flow across contours of fH−1.  相似文献   

5.
Impacts of the South China Sea Throughflow (SCST) on seasonal and interannual variations of the Indonesian Throughflow are studied by comparing outputs from ocean general circulation model (OGCM) experiments with and without the SCST. The observed subsurface maximum in the southward flow through the Makassar Strait is simulated only when the SCST, which is driven by the large-scale wind, is allowed in the model. The mean volume and heat transport by the Makassar Strait Throughflow are reduced by 1.7 Sv and 0.19 PW, respectively, by the existence of the SCST in the model. The difference is particularly remarkable during boreal winter when the SCST reaches its seasonal maximum. Furthermore, the SCST is strengthened during El Niño, leading to the weakening in the southward volume and heat transport through the Makassar Strait by 0.37 Sv and 0.05 PW, respectively. These findings from the OGCM experiments suggest that the SCST may play an important role in climate variability of the Indo-Pacific Ocean.  相似文献   

6.
The dynamics of the seasonal surface circulation in the Philippine Archipelago (117°E–128°E, 0°N–14°N) are investigated using a high-resolution configuration of the Regional Ocean Modeling System (ROMS) for the period of January 2004–March 2008. Three experiments were performed to estimate the relative importance of local, remote and tidal forcing. On the annual mean, the circulation in the Sulu Sea shows inflow from the South China Sea at the Mindoro and Balabac Straits, outflow into the Sulawesi Sea at the Sibutu Passage, and cyclonic circulation in the southern basin. A strong jet with a maximum speed exceeding 100 cm s−1 forms in the northeast Sulu Sea where currents from the Mindoro and Tablas Straits converge. Within the Archipelago, strong westward currents in the Bohol Sea carry the surface water of the western Pacific (WP) from the Surigao Strait into the Sulu Sea via the Dipolog Strait. In the Sibuyan Sea, currents flow westward, which carry the surface water from the WP near the San Bernardino Strait into the Sulu Sea via the Tablas Strait.These surface currents exhibit strong variations or reversals from winter to summer. The cyclonic (anticyclonic) circulation during winter (summer) in the Sulu Sea and seasonally reversing currents within the Archipelago region during the peak of the winter (summer) monsoon result mainly from local wind forcing, while remote forcing dominates the current variations at the Mindoro Strait, western Sulu Sea and Sibutu passage before the monsoons reach their peaks. The temporal variations (with the mean removed), also referred to as anomalies, of volume transports in the upper 40 m at eight major Straits are caused predominantly by remote forcing, although local forcing can be large during sometime of a year. For example, at the Mindoro Strait, the correlation between the time series of transport anomalies due to total forcing (local, remote and tides) and that due only to the remote forcing is 0.81 above 95% significance, comparing to the correlation of 0.64 between the total and local forcing. Similarly, at the Sibutu Passage, the correlation is 0.96 for total versus remote effects, comparing to 0.53 for total versus local forcing. The standard deviations of transports from the total, remote and local effects are 0.59 Sv, 0.50 Sv, and 0.36 Sv, respectively, at the Mindoro Strait; and 1.21 Sv, 1.13 Sv, and 0.59 Sv at the Sibutu Passage. Nonlinear rectification of tides reduces the mean westward transports at the Surigao, San Bernardino and Dipolog Straits, and it also has non-negligible influence on the seasonal circulation in the Sulu Sea.  相似文献   

7.
参照Griffies et al.(2009)提出的海洋—海冰耦合模式参考试验(Coordinated Ocean-ice Reference Experiments,COREs),设计了一个800年积分的数值试验,对一个质量严格守恒的压力坐标海洋环流模式(Pressure Coordinate Ocean Model,PCOM1.0)的基本模拟性能进行了评估,并与观测资料和再分析资料进行了对比。结果表明,PCOM1.0模拟的温盐场和基本流场与COREs模式的模拟水平基本接近。其中,模拟的大西洋经向翻转流在45°N附近达到18 Sv(1 Sv=106 m3 s-1),与观测估计值接近;对海表面温度的模拟误差主要集中在北太平洋黑潮区和北大西洋湾流区等中高纬度急流区;模拟的热带太平洋温跃层过于深厚;模拟的经德雷克海峡的体积输送达130 Sv,比大部分COREs模式及再分析资料都更接近于观测估计值。  相似文献   

8.
Hydrological and hydrochemical conditions in the Kamchatka Strait are considered, the computation of geostrophic flows is carried out, and estimations of the water exchange between the Bering Sea and the Pacific Ocean through this strait are made on the basis of the analysis of data obtained during the trip of the research vessel Miraii in August, 2004. According to the results of computations, the volume transport from the Bering Sea to the Pacific Ocean made up 10.2 Sv; mass transport, 10.4 × 109 kg/s; salt transport, 0.35 × 106 kg/s. The estimated value of heat transport through the strait is 11.4 × 1015 W. The Eastern Kamchatka Current carries oxygen and biogenic elements through the strait: 1222, 28, 380, and 1036 kmol/s for oxygen, phosphates, nitrates, and silicon, respectively. In total, the Bering Sea is the source of oxygen and biogenic elements for the northern part of the Pacific Ocean in the upper 500-m layer.  相似文献   

9.
The global heat balance: heat transports in the atmosphere and ocean   总被引:10,自引:0,他引:10  
The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m–2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30°N. Comparable values are achieved in the Pacific at 20°N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20°S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.  相似文献   

10.
An ocean general circulation model of global domain, full continental geometry and bottom topography, is used to study the influence of the Bering Strait on the general circulation by comparing equilibrium solutions obtained with and without a land-bridge between Siberia and Alaska. The model is integrated with restoring boundary conditions (BC) on temperature and salinity, and later, with mixed BC in which a restoring BC on temperature is maintained but a specified flux condition on salinity is imposed. In both cases, the effect of the Bering Strait is to allow a flow of about 1.25–1.5 Sv from the North Pacific to the Arctic Ocean and, ultimately, back to the North Pacific along the western boundary current regions of the Atlantic and Indian Oceans. When a restoring BC on salinity is used, the overturning associated with North Atlantic Deep Water and Antarctic Intermediate Water formation are increased if the Bering Strait is present in the model geometry. The result of switching to a specified flux BC on salinity is to cause a transition in the THC in which the overturning associated with North Atlantic Deep Water formation increases from about 12 Sv to about 22 Sv. This transition occurs in an essentially smooth fashion with no significant variability and is about 12% smaller in magnitude if the Bering Strait is present in the model geometry. Because the Bering Strait appears to exert some influence on the general circulation and the formation of deep water masses, it is recommended that this Strait be included in the geometry of similar resolution models designed to study the deep ocean and potential changes in climate. Correspondence to: CJC Reason  相似文献   

11.
In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000–2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.  相似文献   

12.
The Indonesian seas provide a sea link between the tropical Pacific and Indian Oceans. The connection is not simple, not a single gap in a ‘wall’, but rather composed of the intricate patterns of passages and seas of varied dimensions. The velocity and temperature/salinity profiles Indonesian throughflow (ITF) are altered en route from the Pacific into the Indian Ocean by sea–air buoyancy and momentum fluxes, as well as diapycnal mixing due to topographic boundary effects and dissipation of tidal energy. The INSTANT program measured the ITF in key channels from 2004 to 2006, providing the first simultaneous view of the main ITF pathways. The along-channel speeds vary markedly with passage; the Makassar and Timor flow is relatively steady in comparison to the seasonal and intraseasonal fluctuations observed in Lombok and Ombai Straits. The flow through Lifamatola Passage is strongly bottom intensified, defining the overflow into the deep Indonesian basins to the south. The 3-year mean ITF transport recorded by INSTANT into the Indian Ocean is 15 × 106 m3/s, about 30% greater than the values of non-simultaneous measurements made prior to 2000. The INSTANT 3-year mean inflow transport is nearly 13 × 106 m3/s. The 2 × 106 m3/s difference between INSTANT measured inflow and outflow is attributed to unresolved surface layer transport in Lifamatola Passage and other channels, such as Karimata Strait. Introducing inflow within the upper 200 m to zero the water column net convergence still requires upwelling within the intervening seas, notably the Banda Sea. A layer of minimum upwelling near 600 m separates upwelling within the thermocline from a deep water upwelling pattern driven by the deep overflow in Lifamatola Passage. For a steady state condition upwelling thermocline water is off-set by a 3-year mean sea to air heat flux of 80 W/m2 (after taking into account the shoaling of thermocline isotherms between the inflow and outflow portals), which agrees with the climatic value based on bulk formulae sea–air flux calculations, as well as transport weighted temperature of the inflow and outflow water. The INSTANT data reveals interannual fluctuations, with greater upwelling and sea to air heat flux in 2006.  相似文献   

13.
Changes in the Indonesian Throughflow(ITF) and the South China Sea throughflow—measured by the Luzon Strait Transport(LST)—associated with the 1976/77 regime shift are analyzed using the Island Rule theory and the Simple Ocean Data Assimilation dataset.Results show that LST increased but ITF transport decreased after 1975.Such changes were induced by variations in wind stress associated with the regime shift.The strengthening of the easterly wind anomaly east of the Luzon Strait played an important role in ...  相似文献   

14.
Prior studies have revealed that,as a part of the Pacific tropical gyre,the South China Sea throughflow(SCSTF) is strongly influenced by the Pacific low-latitude western boundary current(LLWBC).In this study,ocean general circulation model(OGCM) experiments with and without connection to the South China Sea(SCS) were performed to investigate the impact of the SCSTF on the Pacific LLWBC.These model experiments show that if the SCS is blocked,seasonal variability of the Kuroshio and Mindanao Current becomes stronger,and the meridional migration of the North Equatorial Current(NEC) bifurcation latitude is enhanced.Both in seasonal and interannual time scales,stronger Luzon Strait transport(LST) induces a stronger Kuroshio transport combined with a southward shift of the NEC bifurcation,which is unfavorable for a further increase of the LST;a weaker LST induces a weaker Kuroshio transport and a northward shifting NEC bifurcation,which is also unfavorable for the continuous decrease of the LST.  相似文献   

15.
对比两个同化资料GODAS(Global Ocean Data Assimilation System)和SODA(Simple Ocean Data Assimilation),考察中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室发展的气候系统海洋模式LICOM(LASG/IAP Climate system Ocean Model)模拟的北印度洋经向环流及热输送的气候态。LICOM能抓住北印度洋大尺度环流的季节变化特征,模拟的年平均越赤道热输送为-0.24 PW (1 PW=1015W),较之以往的数值模式结果更接近观测和同化资料。与同化资料的差异主要体现在季节变化强度,北半球夏季在赤道以南偏弱0.5 PW,这与模式夏季的纬向风应力偏弱,热输送中的大项Ekman热输送模拟偏弱,从而模拟的经圈翻转环流较浅有关。  相似文献   

16.
Mean annual estimates of the oceanic poleward energy transport are obtained using a global atmospheric general circulation model. The computations are carried out by using the atmospheric model to determine the net annual heat flux into the ocean on an 8° × 10° grid. Assuming no net annual heat storage, the annual surface heat fluxes into any zonal band must be accompanied by a corresponding meridional heat transport in the ocean. Heat is transported northward at all latitudes in the Atlantic Ocean and is transported poleward in both hemispheres in the Pacific Ocean. To account for the net northward transport throughout the Atlantic, heat is transported into the Atlantic from the Indian and Pacific basins. The results are compared with several recent direct and indirect calculations of oceanic meridional heat transports.  相似文献   

17.
The properties of salinity in the South China Sea (SCS), a significant marginal sea connecting the Pacific andIndian Oceans, are greatly influenced by the transport of fresh water flux between the two oceans. However, the long-termchanges in the intermediate water in the SCS have not been thoroughly studied due to limited data, particularly in relationto its thermodynamic variations. This study utilized reanalysis data products to identify a 60-year trend of freshening in theintermediate waters of the northern South China Sea (NSCS), accompanied by an expansion of low-salinity water. Thestudy also constructed salinity budget terms, including advection and entrainment processes, and conducted an analysis ofthe salinity budget to understand the impacts of external and internal dynamic processes on the freshening trend of theintermediate water in the NSCS. The analysis revealed that the freshening in the northwest Pacific Ocean and theintensification of intrusion through the Luzon Strait at intermediate levels are the primary drivers of the salinity changes inthe NSCS. Additionally, a weakened trend in the intensity of vertical entrainment also contributes to the freshening in theNSCS. This study offers new insights into the understanding of regional deep sea changes in response to variations in boththermodynamics and oceanic dynamic processes.  相似文献   

18.
On the upper oceanic heat budget in the south china sea:Annual cycle   总被引:12,自引:3,他引:9  
l.Intr0ducti0nInrecentyCarstheSouthChinaSea(SCS)hasbecomeoneofthemostimP0rtantregionsinthelocalair-seainteractionresearchbecauseofitssPecialgeographicPOsitionandsemi-encloseddeepbasincharacteristics.TheimP0rtanceoftheSCSisembodiedmainlyinwhichisoneofthekeyheatandmoisturesourcesofatmosphericcirculationineasternAsia.TheonsetandmaintenanceoftheSCSmonsoonarecloselyconnectedwiththelargeheattransportfromtheSCStoair(Yan,l997).Thestudyonspatial-temporalvariationofair-seaheatexchangeintheSCS…  相似文献   

19.
A 1/12° global version of the HYbrid Coordinate Ocean Model (HYCOM) using 3-hourly atmospheric forcing is analyzed and directly compared against observations from the International Nusantara STratification ANd Transport (INSTANT) program that provides the first long-term (2004–2006) comprehensive view of the Indonesian Throughflow (ITF) inflow/outflow and establishes an important benchmark for inter-basin exchange, including the net throughflow transport. The simulated total ITF transport (−13.4 Sv) is similar to the observational estimate (−15.0 Sv) and correctly distributed among the three outflow passages (Lombok Strait, Ombai Strait and Timor Passage). Makassar Strait carries ∼75% of the observed total ITF inflow and while the temporal variability of the simulated transport has high correlation with the observations, the simulated mean volume transport is ∼37% too low. This points to an incorrect partitioning between the western and eastern inflow routes in the model and is the largest shortcoming of this simulation. HYCOM simulates the very deep (>1250 m) overflow at Lifamatola Passage (−2.0 Sv simulated vs. −2.5 Sv observed) and indicates overflow contributions originating from the North (South) Equatorial Current in boreal winter–spring (summer–autumn). A new finding of INSTANT is the mean eastward flow from the Indian Ocean toward the interior Indonesian Seas on the north side of Ombai Strait. This flow is not robustly simulated at 1/12° resolution, but is found in a 1/25° version of global HYCOM using climatological forcing, indicating the importance of horizontal resolution. However, the 1/25° model also indicates that the mean eastward flow retroflects, turning back into the main southwestward Ombai Strait outflow, and in the mean does not enter the interior seas to become part of the water mass transformation process. The 1/12° global HYCOM is also used to fill in the gaps not measured as part of the INSTANT observational network. It indicates the wide and shallow Java and Arafura Seas carry −0.8 Sv of inflow and that the three major outflow passages capture nearly all the total Pacific to Indian Ocean throughflow.  相似文献   

20.
Studies have suggested that sea-ice cover east and west of Greenland fluctuates out-of phase as a part of the Atlantic decadal climate variability, and greater changes are possible under global warming conditions. In this study, the response of the Atlantic meridional overturning circulation (MOC) to the distribution of surface fresh-water flux is explored using a global isopycnal ocean model. An Arctic ice related fresh-water flux of 0.1 Sv entering the Nordic Seas is shown to reduce the maximum overturning by 1 to 2 Sv (106 m3 s–1). A further decrease of 3 to 5 Sv in the MOC is observed when the fresh-water flux is shifted from the Fram Strait to the southern Baffin Bay area. Surprisingly, the salinity in much of the upper Nordic Seas actually increases when the Arctic fresh-water source is the strongest there, as a result of enhanced global overturning. It reflects the great influence of Labrador Sea convection on this models MOC. By applying a weaker surface fresh-water transport perturbation (0.02 Sv) on the Baffin Bay area and therefore perturbing the Labrador Sea Water (LSW) formation, we have also investigated the interaction between the overflows across the Greenland–Scotland Ridge and the LSW and find that, with the same surface forcing conditions in the Nordic Seas, volume transport of the overflows weakens when the LSW formation intensifies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号