首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测   总被引:17,自引:2,他引:17  
刘东  戚福弟  金传佳  岳古明  周军 《大气科学》2003,27(6):1093-1100
研制了一台L300偏振激光雷达,用于卷云和沙尘气溶胶后向散射光退偏振比的探测研究.介绍了偏振激光雷达的探测原理,叙述了L300偏振激光雷达的结构、技术参数、测量方法和数据处理方法.初步的探测结果表明,合肥西郊上空高度在10 km左右的卷云的退偏振比在0.4~0.5之间,沙尘气溶胶的退偏振比在0.2~0.3范围内,但是剧烈沙尘暴的气溶胶的退偏振比可达到0.4左右.  相似文献   

2.
A micro‐pulse lidar system (MPL) was used to measure the vertical and horizontal distribution of aerosols during the Aerosol Characterization Experiment 2 (ACE‐2) in June and July of 1997. The MPL measurements were made at the Izaña observatory (IZO), a weather station located on a mountain ridge (28°18' N, 16°30' W, 2367 m asl) near the center of the island of Tenerife, Canary Islands. The MPL was used to acquire aerosol backscatter, extinction, and optical depth profiles for normal background periods and periods influenced by Saharan dust from North Africa. System tests and calibration procedures are discussed, and an analysis of aerosol optical profiles acquired during ACE‐2 is presented. MPL data taken during normal IZO conditions (no dust) showed that upslope aerosols appeared during the day and dissipated at night and that the layers were mostly confined to altitudes a few hundred meters above IZO. MPL data taken during a Saharan dust episode on 17 July showed that peak aerosol extinction values were an order of magnitude greater than molecular scattering over IZO, and that the dust layers extended to 5 km asl. The value of the dust backscatter–extinction ratio was determined to be 0.027±0.007 sr−1. Comparisons of the MPL data with data from other co‐located instruments showed good agreement during the dust episode.  相似文献   

3.
Regular aerosol extinction and backscatter measurements using a UV Raman Lidar have been performed for almost 3 years in Hamburg in the frame of the German Lidar Network. A set of 92 aerosol extinction and 164 aerosol backscatter profiles has been used for statistical investigations. Mean values and variances of the aerosol extinction and backscatter in the boundary layer have been calculated. Large fluctuations during the whole year have been found. The measured aerosol extinction over Hamburg shows a seasonal cycle with highest values in early fall and a second less prominent peak in spring.An analysis of the data using back trajectories showed a dependence of the aerosol extinction on the origin of the air mass. The residence time of the air mass over industrialized areas was found to be an important parameter for the measured aerosol extinction at Hamburg. However, only a small part of the total variability could be explained by the air mass origin.For 75 cases of aerosol extinction measurements under cloud-free conditions, the aerosol backscatter profile and therefore, the lidar ratio as a function of altitude could be determined. Winter measurements of the lidar ratio are often close to model results for maritime aerosol, the summer measurements are close to the model results for urban or continental aerosols.The high quality of the data has been proven by intercomparisons with other lidar systems and with star photometer measurements of the aerosol optical depth during the Lindenberg Aerosol Characterization Experiment (LACE'98) field campaign.  相似文献   

4.
A comparative study on the vertical distributions of aerosol optical properties during haze and floating dust weather in Shanghai was conducted based on the data obtained from a micro pulse lidar.There was a distinct difference in layer thickness and extinction coefficient under the two types of weather conditions.Aerosols were concentrated below 1 km and the aerosol extinction coefficients ranged from 0.25 to 1.50km-1 on haze days.In contrast,aerosols with smaller extinction coefficients(0.20 0.35 km-1) accumulated mainly from the surface to 2 km on floating dust days.The seasonal variations of extinction and aerosol optical depth(AOD) for both haze and floating dust cases were similar greatest in winter,smaller in spring,and smallest in autumn.More than 85%of the aerosols appeared in the atmosphere below 1 km during severe haze and floating dust weather.The diurnal variation of the extinction coefficient of haze exhibited a bimodal shape with two peaks in the morning or at noon,and at nightfall,respectively.The aerosol extinction coefficient gradually increased throughout the day during floating dust weather.Case studies showed that haze aerosols were generated from the surface and then lifted up,but floating dust aerosols were transported vertically from higher altitude to the surface.The AOD during floating dust weather was higher than that during haze.The boundary layer was more stable during haze than during floating dust weather.  相似文献   

5.
Measurements from July 4 to July 8, 2005 by a high resolution visible radiometer, a Raman lidar, a ground particulate matter sampler, and ground meteorological sensors have been combined in synergy to infer the intrusion over south-east Italy, of air masses from north-west Sahara, the Atlantic Ocean, and the continental Europe. It is shown that backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles represent the best tools to detect the intrusion of long range transported air masses and to monitor their effects on the vertical distribution of aerosol optical and microphysical properties. High resolution radiometers are instead important tools to monitor changes on columnar aerosol properties and size distributions.Backscatter coefficient, depolarization-ratio, and lidar ratio vertical profiles have revealed that aerosol optical and microphysical properties significantly changed with time and space during African dust outbreaks: the intrusion of dust particles that at first occurred above 2 km of altitude extending up to 6 km, affected the all aerosol load down to ground within few hours. Aerosol size distributions showed during dust events a clear bimodality with an accumulation mode maximum at 0.24 µm and a coarse mode maximum at 0.94 μm. Conversely, we have found that during the advection of air masses from the Atlantic and continental Europe, aerosol particles were mainly located below 2 km, their optical and microphysical properties were affected by smaller changes in time and space, and were characterized by depolarization ratios rather close to those due to a pure molecular atmosphere. In this case bimodal size distributions with an accumulation mode showing two sub-modes at 0.16 μm and 0.24 μm, respectively and a coarse mode centred at 0.94 μm have also been observed.  相似文献   

6.
The vertical distribution of single scattering albedos (SSAs) of Asian dust mixed with pollutants was derived using the multi-wavelength Raman lidar observation system at Gwangju (35.10°N,126.53°E).Vertical profiles of both backscatter and extinction coefficients for dust and non-dust aerosols were extracted from a mixed Asian dust plume using the depolarization ratio from lidar observations.Vertical profiles of backscatter and extinction coefficients of non-dust particles were input into an inversion algorithm to retrieve the SSAs of non-dust aerosols.Atmospheric aerosol layers at different heights had different light-absorbing characteristics.The SSAs of non-dust particles at each height varied with aerosol type,which was either urban/industrial pollutants from China transported over long distances at high altitude,or regional/local pollutants from the Korean peninsula.Taking advantage of independent profiles of SSAs of non-dust particles,vertical profiles of SSAs of Asian dust mixed with pollutants were estimated for the first time,with a new approach suggested in this study using an empirical determination of the SSA of pure dust.The SSAs of the Asian dust-pollutants mixture within the planetary boundary layer (PBL) were in the range 0.88-0.91,while the values above the PBL were in the range 0.76-0.87,with a very low mean value of 0.76 ± 0.05.The total mixed dust plume SSAs in each aerosol layer were integrated over height for comparison with results from the Aerosol Robotics Network (AERONET) measurements.Values of SSA retrieved from lidar observations of 0.92 ± 0.01 were in good agreement with the results from AERONET measurements.  相似文献   

7.
Multiple‐angle micro‐pulse lidar (MPL) observations were made at Las Galletas on Tenerife, Canary Islands during the Aerosol Characterization Experiment‐2 (ACE‐2) conducted June–July, 1997. A principal objective of the MPL observations was to characterize the temporal/spatial distributions of aerosols in the region, particularly to identify and profile elevated Saharan dust layers which occur intermittently during the June–July time period. Vertical and slant angle measurements taken 16 and 17 July characterize such an occurrence, providing aerosol backscatter, extinction, and optical depth profiles of the dust layer between 1 and 5 km above mean sea level (MSL). Additionally, horizontal measurements taken in Las Galletas throughout the 6‐week period provide a time profile of the varying aerosol extinction at the surface. This profile exhibits the alternating periods of clean maritime air and pollution outbreaks that typified the region. Horizontal measurements also provide some evidence suggesting the possible influx of Saharan dust from the free troposphere to the surface. This paper presents estimates of aerosol optical properties retrieved from the multi‐angle MPL measurements in addition to an outline of the methodologies employed to obtain these results.  相似文献   

8.

A Raman lidar system was operated along with the Microtops sunphotometer measurements to carry out the study of the variation of the optical properties of aerosols over Palampur (32.11° N and 76.53° E), India from 17th April to 11th May 2019. The lidar system is furnished with Raman (N2) channel and depolarization channel allowing independent measurement of Lidar Ratio (LR) and linear depolarization ratio. The study reveals that the majority of the aerosols approximately were restricted within the planetary boundary layer (PBL) and very less loading was present in the free troposphere over the study location. The particle loading over the study period was found to be very less with aerosol backscatter coefficient (at 355 nm) ranging from ~0.13 Mm?1sr?1 to ~7.25 Mm?1sr?1 with mean value of 2.67?±?0.82 Mm?1sr?1 and it is well supplemented by the mean aerosol optical depth (AOD) of 0.37?±?0.13 obtained from Microtops Sunphotometer. The average lidar ratio values for 0-1 km altitude (L1) 72?±?13sr, for 1-2 km (L2) altitude 55?±?8sr, for 2-3 km (L3) 54?±?15sr were observed as suggesting dominance of the biomass burning aerosols and anthropogenic aerosols. The particle depolarization ratio (355 nm) values were found from approximately 4.8?±?2.7% to 11.5?±?1.9% with the mean value of 7?±?1.3% suggesting the presence of non-spherical particles. To trace the sources of the pollution, we derived the HYSPLIT trajectory which shows the majority of the movement was from local sources.

  相似文献   

9.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

10.
Lidar has been used extensively in the area of atmospheric aerosol measurement. Two unknowns at the reference altitude, the lidar ratio and the backscatter coefficient, need to be resolved from the lidar equation. In the actual application, these two values are difficult to obtain, particularly the backscatter coefficient. To better characterize the optical properties of aerosols, optical thickness, and attenuated backscatter obtained by other instruments are usually used as the input for joint inversion. However, this method is limited by location and time. In this study, the authors propose a new method for aerosol retrieval by using Mie scatter- ing lidar data to solve this problem. The authors take the horizontal aerosol extinction coefficient as the con- straint to begin the iteration until a self-consistent aerosol vertical profile was obtained. By comparing their results with Aerosol Robotic Network (AERONET) data, the authours determine that the aerosol extinction coefficient obtained by combining horizontal and vertical lidar observations is more pre- cise than that obtained by using the traditional Fernald method. This new method has been adopted for re- trieving the extinction coefficient of aerosols during the observation days.  相似文献   

11.
黄土高原半干旱区典型日吸收性气溶胶综合观测分析   总被引:2,自引:0,他引:2  
利用兰州大学半干旱气候与环境观测站的太阳光度计、激光雷达、微波辐射计综合观测资料,结合辐射传输模式分析了该地区秋季典型日2012年9月3~4日、21日和28日气溶胶物理特性、垂直分布特征,及其与气象条件的关系。研究时期的气溶胶主要为局地沙尘与人为污染混合气溶胶,吸收性明显,尺度较小。其中,4日西北风增强,远距离传输沙尘气溶胶,气溶胶光学厚度最大,粒子尺度明显增大。尝试利用灰色关联度法确定参考高度,分别为7.41 km、8.47 km、7.13 km和7.66 km,反演气溶胶消光系数,由此积分得到的光学厚度与太阳光度计观测值相关性可达0.975,反演效果较好。研究时期气溶胶的抬升主要受白天热力湍流作用,边界层发展,气溶胶向上传输,每日12时(当地时间,下同)至14时传输至最大高度,气溶胶抬升的高度对应大气加热率的高值区,低层加热率可达1 K d-1。气溶胶在大气层顶和地面造成负辐射强迫,分别为-12.707 W m-2、-25.398 W m-2,大气中表现为正辐射强迫,为12.692 W m-2,大气层顶的辐射强迫对气溶胶的物理特性最为敏感,当气溶胶吸收性明显时,大气层顶的瞬时辐射强迫会出现正值。  相似文献   

12.
The potential resources on the ion-stimulated syntheses effects of aerosol particles of lower troposphere in test sites in the arctic, mountain, arid and forest areas as the function of irradiation time and gas-precursor concentration were experimentally and theoretically evaluated. The dust-free outdoor air was irradiated with an ionization current of 10− 6 A by α-rays from isotope 239Pu. The total output of radiolytic aerosols (RA) with a diameter of 3–1000 nm was found to be 0.05–0.1 molecules per 1 eV of absorbed radiation, while the physical upper limit is 0.25–0.4 molecules/eV. In an interval of exposition time from 6 to 800 s (adsorbed energy is 3 · 1012–1014 eV/cm3) the RA mass concentration at different sites was increased from 1–10 to 50–500 μg/m3. According to the liquid chromatography data the major RA material is the H2O/HNO3 solution with acid concentration  25%. The used physical model presents new aerosols as a product from small and intermediate ion association through formation of neutral clusters and describes adequately some of the peculiarities in field experiment data. Introducing SO2, NH3, and also hydrochloric, nitric and sulphuric acid vapours with concentration 0.1–1 mg/m3 in the irradiated air stimulated an increase of mass aerosol concentration by a factor of 8–30. The mean size also decreased by a factor of 3–5. These facts allowed us to expect that the chemical composition of radiolytic aerosols generated in outdoor air would noticeably differ after addition of the gas-precursors.  相似文献   

13.
A total of 48 precipitation samples have been collected from individual precipitation events at the Nam Co Monitoring and Research Station for Multisphere Interactions (Nam Co Station, 30°47′N, 90°58′E; 4730 m a.s.l) located in the central Tibetan Plateau from August 2005 to August 2006. All samples were analyzed for major cations (NH4+, Na+, K+, Ca2+ and Mg2+) and anions (Cl, NO3 and SO42−), conductivity and pH. Precipitation pH values ranged from 6.03 to 7.38 with an average value of 6.59. The high pH is due to large inputs of crustal aerosols in the atmosphere, which contain a large fraction of carbonate. Ca2+ is the dominant cation in precipitation with an average value of 65.58 μeq L− 1 (4.91–301.41 μeq L− 1), accounting for 54% of the total cations in precipitation. HCO3 is the predominant anion, accounting for 62% of the total anions. When compared with data from a snow pit in the Zhadang Glacier 50 km away (5800 m a.s.l), major ion concentration in precipitation at the Nam Co Station is much higher due to local aerosol inputs. Correlation and empirical orthogonal function (EOF) analysis indicate that regional crustal aerosols and species from combustion emissions of residents are the major sources for these ions, lake salt aerosols from the Nam Co nearby and regional mineral aerosols from dry lake sediments are secondary sources, and sea salt contribution is the least due to the long distance transport.  相似文献   

14.
The following Henry's law constants (K H/mol2kg-2atm-1) for HNO3 and the hydrohalic acids have been evaluated from available partial pressure and other thermodynamic data from 0°–40°C, 1 atm total pressure: HNO 3 , 40°C–5.85×105; 30°C–1.50×106; 25°C–2.45×106; 20°C–4.04×106; 10°C–1.15×107; 0°C–3.41×107. HF, 40°C–3.2; 30°C–6.6; 25°C–9.61; 20°C–14.0; 10°C–32.0; 0°C–76. HCl, 40°C–4.66×105; 30°C–1.23×106; 25°C–2.04×106; 20°C–3.37×106; 10°C–9.71×106; 0°C–2.95×107. HBr, 40°C–2.5×108; 30°C–7.5×108; 25°C–1.32×109; 20°C–2.37×109; 10°C–8.10×109; 0°C–3.0×1010. HI, 40°C–5.2×108; 30°C–1.5×109; 25°C–2.5×109; 20°C–4.5×109; 10°C–1.5×1010; 0°C–5.0×1010. Simple equilibrium models suggest that HNO3, CH3SO3H and other acids up to 10x less soluble than HCl displace it from marine seasalt aerosols. HF is displaced preferentially to HCl by dissolved acidity at all relative humidities greater than about 80%, and should be entirely depleted in aged marine aerosols.  相似文献   

15.
Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.  相似文献   

16.
The microphysical structure, chemical composition and prehistory of aerosol are related to the aerosol optical properties and radiative effect in the UV spectral range. The aim of this work is the statistical mapping of typical aerosol scenarios and adjustment of regional aerosol parameters. The investigation is based on the in situ measurements in Preila (55.55° N, 21.00° E), Lithuania, and the AERONET data from the Gustav Dalen Tower (58 N, 17 E), Sweden.Clustering of multiple characteristics enabled to distinguish three aerosol types for clear-sky periods: 1) clean maritime–continental aerosol; 2) moderately polluted maritime–continental aerosol; 3) polluted continental aerosol. Differences between these types are due to significant differences in aerosol number and volume concentration, effective radius of volume distribution, content of SO4 ions and Black Carbon, as well as different vertical profiles of atmospheric relative humidity. The UV extinction, aerosol optical depth (AOD) and the Ångstrom coefficient α increased with the increasing pollution. The value α = 1.96 was observed in the polluted continental aerosol that has passed over central and eastern Europe and southern Russia. Reduction of the clear-sky UV index against the aerosol-free atmosphere was of 4.5%, 27% and 41% for the aerosol types 1, 2 and 3, respectively.  相似文献   

17.
Airborne observations during August 1985 over Greenland and the North American Arctic revealed that dense, discrete haze layers were common above 850 mb. No such hazes were found near the surface in areas remote from local sources of particles. The haze layers aloft were characterized by large light-scattering coefficients due to dry particles (maximum value 1.24 × 10–4m–1) and relatively high total particle concentrations (maximum value 3100 cm–3). Sulfate was the dominant ionic component of the aerosol (0.06 – 1.9 g m–3); carbon soot was also present. Evidence for relatively fresh aerosols, accompanied by NO2 and O3 depletion, was found near, but not within, the haze layers. The hazes probably derived from anthropogenic sources and/or biomass burning at midlatitudes.It is hypothesized that the scavenging of particles by stratus clouds plays an important role in reducing the frequency and intensity of hazes at the surface in the Arctic in summer. Since the detection of haze layers aloft through measurements of column-integrated parameters from the surface (e.g., by lidar) cannot be carried out reliably when clouds are present, such measurements have likely underestimated the occurrence of haze layers in the Arctic, particularly in summer.  相似文献   

18.
Aerosol optical properties over Solar Village, Saudi Arabia have been studied using ground-based remote sensing observations through the Aerosol Robotic Network (AERONET). Our analysis covered 8 recorded years of aerosol measurements, starting from February 1999 through January 2007. The seasonal mean values of aerosol optical thickness (AOT), the Ångström wavelength exponent α and the surface wind speed (V), exhibit a one year cyclical pattern. Seasonal variations are clearly found in the shape and magnitude of the volume size distribution (VSD) of the coarse size mode due to dust emission. The Spring is characterized by dusty aerosols as the modal value of the exponent α was low ~ 0.25 while that of AOT was high ~ 0.3. The modal value of wind speed was the highest ~ 3.6 m/s in spring. The increase in wind speed is responsible for increasing the concentration of dust particles during Spring. Spring of 2003 has the highest mean values of AOT, V and VSD and the lowest mean value for the exponent α. The seasonal mean values of the exponent α are anticorrelated with those of the wind speed (r = − 0.63). The annual mean values of the exponent α are well correlated (r = 0.77) with those of the difference between the maximum and minimum values of temperature ΔT. They are anticorrelated (r = − 0.74) with the annual mean values of the relative humidity. Large aerosol particles and high relative humidity increase the radiative forcing. This results in reduction of the values of the temperature difference ΔT.  相似文献   

19.
We question the correlation between vertical velocity (w) on the one hand and the occurrence of convective plumes in lidar reflectivity (i.e. range corrected backscatter signal Pz 2) and depolarization ratio (Δ) on the other hand in the convective boundary layer (CBL). Thermal vertical motion is directly investigated using vertical velocities measured by a ground-based Doppler lidar operating at 2 μm. This lidar provides also simultaneous measurements of lidar reflectivity. In addition, a second lidar 200 m away provides reflectivities at 0.53 and 1 μm and depolarization ratio at 0.53 μm. The time series from the two lidars are analyzed in terms of linear correlation coefficient (ρ). The main result is that the plume-like structures provided by lidar reflectivity within the CBL as well as the CBL height are not a clear signature of updrafts. It is shown that the lidar reflectivity within the CBL is frequently anti-correlated (ρ (w, Pz 2 )) with the vertical velocity. On the contrary, the correlation coefficient between the depolarization ratio and the vertical velocity ρ (w, Δ ) is always positive, showing that the depolarization ratio is a fair tracer of updrafts. The importance of relative humidity on the correlation coefficient is discussed. An erratum to this article can be found at  相似文献   

20.
Sensitivity of evapotranspiration E and root zone soil moisture content θ to the parameterization of soil water retention Ψ(θ) and soil water conductivity K(Ψ), as well as to the definition of field capacity soil moisture content, is investigated by comparing Psi1-PMSURF and Theta-PMSURF models. The core of PMSURF (Penman–Monteith Surface Fluxes) consists of a 3-layer soil moisture prediction module based on Richard’s equation in combination with the PenmanMonteith concept for estimating turbulent heat fluxes. Psi1- PMSURF and Theta-PMSURF differ only in the parameterization of the moisture availability function Fma. In Psi1,Fma is parameterized by using Ψ(θ) and K(Ψ) hydrophysical functions; in Theta, Fma is parameterized by using hydrophysical parameters: the field capacity θf and wilting point θw soil moisture contents. Both Psi1 and Theta are based on using soil hydrophysical data, that is, there is no conceptual difference between them in the parameterization of E even if in Psi1Fma depends on 12 parameters, while in Theta only on two soil/vegetation parameters. Sensitivity tests are performed using the Cabauw dataset. Three soil datasets are used: the vG (van Genuchten), CH/vG (Clapp and Hornberger/van Genuchten) and CH/PILPS (Clapp and Hornberger/Project for Intercomparison of Land-surface Parameterization Schemes) datasets. The vG dataset is used in van Genuchten’s parameterization, while in Clapp and Hornberger’s the CH/vG and CH/PILPS datasets are used. It is found that the consistency of soil hydrophysical data in the simulation of transpiration is quite important. The annual sum of E obtained by Psi1EPsi1, differs from the annual sum of E obtained by Theta, ETheta, because of the inconsistency between the fitting parameters of Ψ(θ) and K(Ψ) and the θf, and not because of the differencies in the parameterization of Fma. Further, θf can be estimated not only on the basis of using soil hydrophysical functions (the θf so obtained is θSoilf) but also on the basis of analysing the transpiration process (the θfso obtained is θtrf). θtrf values estimated from the condition EThetaEPsi1 are in acceptable accordance with the θSoilf values proposed by Wösten and co-workers. The results are useful in optimizing the parameterization of transpiration in land-surface schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号