首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
利用NCEP1°×1°6 h再分析资料,对副热带高压与西风槽典型环流形势配合下发生的一次四川区域性暴雨过程的不同阶段进行对比分析。结果表明,前期暴雨天气过程,其动力条件占到了主导地位,具有明显的经向垂直环流圈和垂直上升运动支,而在副高断裂后较强冷空气作用下,在副高边缘发生的区域性暴雨过程受西风带槽前的能量锋区影响,动力强迫作用和热力强迫作用激发的次级环流,进一步加强了四川盆地垂直运动的发展;冷空气作用前期的暴雨过程和冷空气进入后副高边缘发生的区域性暴雨过程中暴雨区域内的假相当位温均强于高层,大气处于对流性不稳定层结状态,对四川盆地暴雨的增强也起了不可忽视的作用,但由副高控制到副高逐渐断裂,湿位涡的斜压扰动是逐渐增强的过程,导致倾斜垂直涡度发展,激发更为强烈的上升运动;副高与西风槽环流形势相配合的暖区暴雨过程水汽主要来自中低层孟加拉湾;而副高断裂后发生在副高边缘的区域性暴雨过程,水汽主要来自850hPa层南海和孟加拉湾,从对流层中到低层,四川盆地东部恰恰是冷暖气流的交汇处,偏南气流将海上充沛的水汽输送到盆地东部,为暴雨的发生提供充足的水汽条件,并与对流层低层秦岭附近的东北冷气流交汇。  相似文献   

2.
利用内蒙古自治区气象信息中心提供的全区785个自动气象站24 h和1 h降水量资料以及内蒙古河套地区鄂尔多斯(CINRAD/CB型)多普勒雷达资料,NECP的FNL(1°×1°)逐6 h再分析资料以及全球地形(1°×1°)资料,对2018年7月18-19日内蒙古河套地区致灾暴雨进行成因分析。结果表明,副热带高压成带状稳定少动,其西北侧500 hPa高空槽、中低层700~850 hPa"人"字型切变线和低空急流是暴雨发生的主要背景条件;暴雨期水汽条件表现为强西南支水汽输送和垂直辐合上升运动,水汽通量强度中心发展至700 hPa,水汽通量散度垂直辐合上升至500 hPa,有利于高效率强度大的短时强降水产生;"列车效应"即:由于阴山山脉的地形强迫作用导致的扰动不断输送至暴雨区且在雷达回波特征上表现为显著的东西向带状回波分布形势,是导致暴雨不断发展的重要动力过程,并且暴雨区表现出正涡度中心和负散度中心重合的准正压不稳定结构加剧了对流不稳定的发展。  相似文献   

3.
应用常规气象观测资料、NCEP(1°×1°)再分析资料和FY-2C气象卫星资料,对2007年7月28—29日发生在陕南丹凤的暴雨天气进行综合分析。结果表明:贝加尔湖的阻塞高压使得中高纬环流形势稳定,河套低涡、副高位置稳定少动,商洛处于稳定的东高西低的环流形势是本次暴雨的大尺度环流背景;低涡切变,低空西南急流为本次暴雨过程提供了充沛的水汽和能量条件,暴雨区上空存在着明显的水汽通量辐合中心,中层干冷空气由东北向下侵入暖气团,在雨区上空形成对流不稳定区。暴雨区上空900~300hPa都为正涡度区,为一深厚的气旋性涡旋,有利于对流的发展,雨区垂直运动发展旺盛且深厚,为大降雨提供了抬升条件。散度垂直分布从对流层低层到高层呈现辐合一辐散的双重结构,有利于对流的发生发展。  相似文献   

4.
应用WRF V3.5中尺度模式,对陕西省2013年7月12~13日的一次暴雨过程进行数值模拟,并设计了降低地形和减少水汽含量2个敏感性试验,探讨了地形和水汽对本次暴雨过程的影响。结果表明:(1)模式能较好地模拟出本次暴雨天气过程,反映出了主要雨带的形状,但模拟的降水量存在偏差,其可能原因是初始场不能合理反映大气实况;(2)嵌套区域d02的地形高度降低至原始高度的1/3后,107°E~109°E范围的散度垂直剖面呈辐合—辐散的双重结构,暴雨区上空中低层假相当位温梯度变大,垂直上升运动增强,进而改变了降水的强度和范围;(3)将初始场中暴雨区南面的水汽含量减少20%后,水汽通量散度极值中心值减少1/3,进而导致模拟区域的雨量减少了58%,表明偏南水汽的输送对本次暴雨雨量有显著增幅作用,暴雨过程中水汽聚集程度是判断暴雨过程雨量大小的关键因素之一。  相似文献   

5.
应用常规观测、海口多普勒回波及NCEP1×1°再分析等资料,对2008年10月12~15日海南特大暴雨成因进行诊断分析,并揭示了暴雨过程中的多普勒回波特征。结果表明:导致海南岛产生强降水的主要原因是热带低压移动缓慢和弱冷空气的低层入侵;当冷暖空气交绥,大气温湿结构发生突变,θse面陡立造成对流系统斜压发展,激发位势不稳定能量释放。正差动假相当位温平流意味着低层暖湿空气的平流大于高层,加强了层结对流不稳定发展;在斜压扰动作用下,对流层中层正差动涡度平流和低压东侧的暖平流破坏了海南岛的准地转平衡,动力强迫和热力强迫共同作用激发了次级环流,导致暴雨区上空的垂直运动的发展,促使暴雨增强。充沛的水汽输送及水汽的强烈辐合,为暴雨发生的有利水汽条件。多普勒径向速度揭示了暴雨区低层冷平流高层暖平流、风向风速的垂直切变大的垂直结构以及持续性的强烈辐合等等特征,回波停滞和"列车效应"使降水增幅,降水回波的性质差异,可造成强降水区域分布的不同。  相似文献   

6.
2008年6月广东阳江特大暴雨过程触发机制分析   总被引:2,自引:2,他引:0  
利用1°×1°分辨率的NCAR/NCEP再分析资料、中尺度数值分析产品等,对2008年6月6—7日阳江特大暴雨的大尺度背景、环流条件以及触发、维持机制进行了分析。结果表明:高低空急流耦合形势的建立为暴雨发生提供了有利的环流条件;在暴雨发展强盛阶段,中低层强辐合、高层强辐散、垂直上升运动强烈发展,三者中心近似垂直结构;异常活跃的西南季风为暴雨提供了充沛的水汽;暴雨发生在垂直环流的上升气流中;暴雨区南部为深厚的西南风、附近中低层为东南风、北部中高层为西北风,这种极不稳定的流场结构是超强对流发生的重要机制。  相似文献   

7.
为了探讨暴雨与湿位涡场分布特征之间的关系,利用NCEP 1°×1°间隔6 h的再分析资料,通过计算湿位涡(MPV)的垂直分量(MPV1)和水平分量(MPV2),对华北一次暴雨过程的湿位涡场进行了诊断分析。结果表明:此次暴雨发生在对流层低层等θse线密集带内,降水前对流层低层MPV10、MPV20,暴雨区存在对流不稳定和斜压不稳定;暴雨区位于对流层低层MPV1、MPV2正负过渡带的等值线密集带内,有利于水汽辐合和垂直涡度的加强;主要降水期间,850 h Pa层MPV1起主导作用,MPV1负值增大、MPV2正值减小,降水后期,MPV10、MPV2几乎为0,大气层结接近对流稳定。低层湿位涡中心的时空分布与暴雨的发生和落区有很好的对应关系。  相似文献   

8.
海南岛"0810"特大暴雨物理量诊断及多普勒特征分析   总被引:2,自引:2,他引:0  
应用常规观测、海口多普勒回波及NCEP1×1°再分析等资料,对2008年10月12~15日海南特大暴雨成因进行诊断分析,并揭示了暴雨过程中的多普勒回波特征.结果表明:导致海南岛产生强降水的主要原因是热带低压移动缓慢和弱冷空气的低层入侵;当冷暖空气交绥,大气温湿结构发生突变,θse面陡立造成对流系统斜压发展,激发位势不稳定能量释放.正差动假相当位温平流意味着低层暖湿空气的平流大于高层,加强了层结对流不稳定发展;在斜压扰动作用下,对流层中层正差动涡度平流和低压东侧的暖平流破坏了海南岛的准地转平衡,动力强迫和热力强迫共同作用激发了次级环流,导致暴雨区上空的垂直运动的发展,促使暴雨增强.充沛的水汽输送及水汽的强烈辐合,为暴雨发生的有利水汽条件.多普勒径向速度揭示了暴雨区低层冷平流高层暖平流、风向风速的垂直切变大的垂直结构以及持续性的强烈辐合等等特征,回波停滞和"列车效应"使降水增幅,降水回波的性质差异,可造成强降水区域分布的不同.  相似文献   

9.
官晓东  刘玉  郑凯端  沈永生 《气象科技》2018,46(6):1221-1231
利用常规气象资料、自动气象站降水资料和NCEP再分析1°×1°等资料,对福建2017年6月初一次强降水过程进行多尺度分析。结果表明:(1)冷空气与暖湿气流相互作用形成持续性暴雨,中尺度系统的活动导致短时暴雨。(2)较大的风暴相对螺旋度,低层的正涡度和中低层的上升运动有利于中尺度对流系统(MCS)的发展和维持;强烈的热力不稳定和较强的垂直风切变是中尺度对流发展的环境特征。(3)强的整层水汽通量和水汽辐合为暴雨区提供水汽来源和水汽条件。(4)锋生的大小和位置对降水的强度和落区有很好的指示作用;低层以水平锋生为主,中层以垂直锋生为主,有利于成片暴雨的发生。(5)中尺度系统对天气尺度的水汽辐合和边界层对流不稳定条件有增幅作用;上下两支次级环流的上升支叠加,有利于低层不稳定能量的释放,促进中尺度系统的发展。  相似文献   

10.
利用地面降水观测、NCEP/NCAR FNL再分析、ECMWF模式预报场和FY-2H静止卫星TBB资料, 对2020年6月30日浙江省一次暴雨过程进行了综合分析。结果表明: (1) 200 hPa南亚高压强高空辐散、中纬度低槽东移、副热带高压带状稳定的阻塞形势、江淮气旋后部下摆冷空气与暖湿气流交汇形成的冷式切变等共同提供了有利的环境条件; (2)对流层中低层水汽通量向高空伸展、700 hPa正的垂直螺旋度中心都对暴雨落区有示踪作用, 高层正水汽通量散度强于低层负水汽通量散度, 垂直螺旋度和垂直速度中心几乎重合, 先低层强辐合后强垂直上升运动均为本次暴雨的发生提供了重要的水汽和动力条件; (3)暴雨发生在MPV、MPV1和MPV2为正负过渡的零值区, 为对流不稳定和斜压不稳定相结合区域, θse线密集区与地面近乎垂直, 湿位涡的高值中心位于θse梯度最大处, 高空湿位涡下传触发了位势不稳定能量的释放, 引起大范围的强对流暴雨; (4) 850 hPa冷切变线附近的降水云团, 是由多个块状对流云团合并加强形成完整的带状积雨云团, 而上游不断有新生对流云团生成东移补充消散的老单体, 触发阶段对流云后向传播, 扰动发展阶段对流云团合并过程, 形成对流云串的“列车效应”。   相似文献   

11.
一次暴雨过程诊断分析   总被引:2,自引:2,他引:0       下载免费PDF全文
2010年7月11—12日南京市江宁全区普降暴雨到大暴雨。本文利用M3、NCEP/NCAR全球资料同化系统再分析等资料(1°×1°)应用环境分析、物理量场诊断,对产生这次暴雨的形势背景、低空急流、水汽输送、垂直运动、中小尺度系统和强对流云团进行分析。结果表明:在有利的环流背景条件下,中小尺度系统发生发展和演变是这次暴雨产生的直接原因;低空急流为这次暴雨提供了大量的水汽和不稳定能量;中低空切变两侧的水平风场切变不仅为暴雨产生提供了强烈的辐合上升运动,同时对水汽的水平辐合和垂直输送非常有利;强对流云团的生成、移动与强降水的发生密切相关。  相似文献   

12.
利用常规资料、新一代天气雷达观测资料和1°×1°NCEP资料对2006年7月2日发生在陕北南部的一次区域性暴雨、局地大暴雨过程诊断分析。分析表明:该次区域性暴雨、局地大暴雨天气过程发生在西太平洋副热带高压持续西伸北抬后缓慢撤退的过程中,低空气旋性环流及其前部的暖湿切变线是形成暴雨的直接影响系统。低空急流为暴雨提供了源源不断的暖湿气流和不稳定能量,地面辐合是触发对流发展和释放不稳定能量的中尺度条件,有利的涡度散度场耦合、垂直运动的强烈发展和水汽输送及辐合形成了暴雨天气。  相似文献   

13.
通过对新疆2007.07.17大暴雨过程的T213产品物理场进行解释分析,根据揭示其动力、热力和水汽场特征,进而找出新疆大暴雨天气预报的指标。结果表明:新疆2007.07.17大暴雨天气发生在对流层中层强烈的上升运动区、对流层中低层Ω型θse高能舌中心附近以及对流层中低层偏东气流与中层偏南气流和高层偏北气流交汇处的重合区内;而对流层中低层东路水汽的输送对大暴雨的贡献最为重要。T213产品的涡度、散度、垂直运动、风场、流场、水汽通量、比湿、T-Td场在预报时效上与暴雨区一致;假相当位温场、水汽通量散度场在预报时效上超前于暴雨。  相似文献   

14.
辽宁2008年3场暴雨对比分析   总被引:6,自引:1,他引:5       下载免费PDF全文
利用常规气象观测资料、1.0°×1.0°NCEP再分析资料,针对辽宁2008年夏季三次区域性暴雨天气过程,在天气学分析的基础上,对低空急流、水汽场和能量锋相互作用产生暴雨的机制进行探讨。结果表明:低空急流对水汽和能量的输送起非常重要的作用,它一方面为暴雨的产生提供了所需要的大量水汽,另一方面又使得暴雨区低层大气增湿增暖,从而引起对流不稳定加强及垂直上升运动强烈,为暴雨的发生提供大量的不稳定能量。低空急流、纬向剖面上的宽且厚湿柱和能量锋的位置、强度与辽宁强降水的等级和落区关系密切。  相似文献   

15.
沙澧河流域两场大暴雨过程的对比分析   总被引:4,自引:0,他引:4  
利用常规观测资料、自动站资料和NCEP1°×1°再分析资料对2007年7月5日和14日沙澧河流域两场大暴雨过程进行了诊断对比分析.结果表明:不同影响系统下产生的大暴雨过程其动力机制有所差异.垂直螺旋度计算结果显示:两次过程700hPa等压面上正垂直螺旋度中心的移向和强度变化与降水落区及趋势变化有很好的对应关系,暴雨区出现在正垂直螺旋度中心移动的前方,对流域大暴雨的落区有一定的指示意义.5日呈现中低层正、高层负的垂直螺旋度配置,动力条件更有利于大暴雨的发生.湿位涡演变分析发现,5日中低层既存在对流不稳定,又存在对称不稳定,有利于垂直对流和倾斜对流发生,造成流域大暴雨.14日中低层大气处于对流稳定状态,但边界层和中层存在对流不稳定,同时中层还存在较强的对称不稳定,垂直涡度得到较大增长,导致上升运动的加强和水汽的垂直输送,有利于降水增幅.  相似文献   

16.
利用NCEP1°×1°6 h再分析资料,对副热带高压与西风槽典型环流形势配合下发生的一次四川区域性暴雨过程的不同阶段进行对比分析。结果表明,前期暴雨天气过程,其动力条件占到了主导地位,具有明显的经向垂直环流圈和垂直上升运动支,而在副高断裂后较强冷空气作用下,在副高边缘发生的区域性暴雨过程受西风带槽前的能量锋区影响,动力强迫作用和热力强迫作用激发的次级环流,进一步加强了四川盆地垂直运动的发展;冷空气作用前期的暴雨过程和冷空气进入后副高边缘发生的区域性暴雨过程中暴雨区域内的假相当位温均强于高层,大气处于对流性不稳定层结状态,对四川盆地暴雨的增强也起了不可忽视的作用,但由副高控制到副高逐渐断裂,湿位涡的斜压扰动是逐渐增强的过程,导致倾斜垂直涡度发展,激发更为强烈的上升运动;副高与西风槽环流形势相配合的暖区暴雨过程水汽主要来自中低层孟加拉湾;而副高断裂后发生在副高边缘的区域性暴雨过程,水汽主要来自850hPa层南海和孟加拉湾,从对流层中到低层,四川盆地东部恰恰是冷暖气流的交汇处,偏南气流将海上充沛的水汽输送到盆地东部,为暴雨的发生提供充足的水汽条件,并与对流层低层秦岭附近的东北冷气流交汇。   相似文献   

17.
利用常规气象观测资料、EC-interim逐6 h 0.5°×0.5°再分析资料、卫星云图和雷达资料,对2017年7月25—26日陕北大暴雨过程成因进行了综合诊断分析,结果表明:河套地区西风东移与副高外围暖湿气流在陕西交汇,为暴雨提供了有利的环流形势;陕北暴雨区有两支水汽输送带,700 hPa上西南风急流水汽输送以及850 hPa上偏东风急流水汽输送,为暴雨提供了充沛的水汽和能量;700 hPa上榆林东部水汽辐合抬升,加之850 hPa偏东风在东部河谷辐合爬升,造成榆林东部地区的大暴雨天气;对流条件分析发现,暴雨发生前陕北地区中低层湿度较好,850 hPa比湿达到15~17 g/kg,大气不稳定度强,850 hPa和500 hPa的温差达到28℃,假相当位温相差18℃,CAPE值达到了2 354 J/kg,充沛的水汽、能量条件为对流提供了十分有利的条件;河套东北侧弱干冷空气与西南暖湿气流在陕北形成假相当位温密集带,大气湿斜压性增强,锋生触发陕北地区不稳定能量释放,形成强降水;不稳定分析表明,在降水前期及初期,大气对流不稳定度高,随着降水的产生,对流不稳定能量释放,强降水凝结潜热对中层大气的加热作用,又使得大气斜压不稳定增强,中层大气锋生造成的垂直运动使得陕北地区的强降水持续,造成大暴雨天气。  相似文献   

18.
基于WRF模式的暴雨天气过程的数值模拟及诊断分析   总被引:2,自引:0,他引:2  
利用新一代中尺度数值预报模式WRF2.2和1°×1°的NCEP气象再分析资料,对2009年9月17日发生在江苏南部地区覆盖沪宁高速公路的一次大暴雨天气过程进行了数值模拟。经AWMS(the automatic weather monitoring system)实测数据验证,此次天气过程的模拟效果较为理想。对模式输出的物理量进行诊断分析后发现:长江中下游地区的β中尺度低涡的发展、移动对暴雨过程中降水的加强和维持起着重要的作用;水汽辐合带在500hPa以下非常显著,在暴雨区形成了深厚的高湿环境,为暴雨的产生、加强和维系提供了重要的水汽条件;暴雨区内前期及降水过程中都存在较为强烈的垂直运动,且涡度场与散度场在垂直结构配置上一致,使得大气层结不稳定能量释放,形成了旺盛的对流天气;对流层中上层大气为中性层结,低层为位势不稳定,所以整层大气有对流发展,有利于暴雨的形成。  相似文献   

19.
利用常规观测资料及NCEP 1°×1° 6h再分析资料,对2007年7月上旬四川东北部连续出现的3场大暴雨过程的环流形势及动力结构、水汽输送和热力不稳定条件进行了诊断分析。结果表明:(1)前2场区域性大暴雨出现在副热带高压和巴尔喀什湖冷涡两个长波系统稳定少动的阻塞环流形势下.第3场局地性大暴雨发生在环流调整过程中,副热带高压快速东撤导致对流云团在东移过程中迅速减弱消亡;(2)暴雨的水汽主要来自南海,低空偏南风急流的维持为连续暴雨提供了源源不断的水汽输送和持续的能量供应,3场暴雨的中心均出现在位于低空急流出口区左侧水汽辐合中心的巴中地区;(3)造成严重洪涝灾害的前2场区域性大暴雨过程期间,从地面到高层形成了“辐合-辐散-辐合-辐散”接力式上下大气运动的动力结构,大气层结处于高能和对流不稳定状态,且有冷空气触发,大暴雨发生在能量锋区偏向暖区一侧。  相似文献   

20.
利用华北地区248个加密气象观测站资料、FY-2G黑体亮温TBB、邢台站探空资料、华北地区多普勒雷达资料、欧洲中心(ECMWF)0.25°×0.25°和NCEP/NCAR(1°×1°)再分析资料,对2016年7月19—21日一场特大暴雨进行多尺度特征分析。结果表明:200 hPa南亚高压系统呈东西带状分布,500 hPa为“东高西低”环流背景,鄂霍茨克海附近闭合高压下游阻挡效应使上游系统移速缓慢,华北长时间处于深槽之中,环流形势利于产生稳定经向型暴雨;通过高低层流场对比发现,高空急流入口区右侧与低空急流出口区左侧重叠区为最强降水区域,降水大值区均位于太行山及燕山山脉迎风坡;垂直方向上,垂直上升运动中心介于散度辐合中心与辐散中心之间,剧烈的抽吸效应将水汽输送至高层,冷暖气流交汇及水汽上升过程凝结潜热释放导致对流系统迅速发展。河北地区稳定的深厚气旋是本次暴雨的关键系统,19日石家庄地区强对流单体(>45 dBz)存在时间超过20 h。MCS影响范围广、特殊山脉地形作用、系统停留时间较长等原因造成累积降水量增大,是本次暴雨与“7.21”北京特大暴雨相比的突出特点之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号