首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
在中国科学院大气物理研究所的三维全弹性对流风暴云催化数值模式(简称为IAP-CSM3D)的基础上,对模式中催化部分的参数化方案进行了改进,推导出人工冰晶与其它粒子之间相互作用的微物理过程的参数化方程。改进后的模式将催化产生的人工冰晶单独作为预报量进行处理,把人工冰晶与自然冰晶区分开,且考虑的人工冰晶谱型为双参数粒子谱,使模式更符合实际。利用改进后的模式模拟了2005年7月8日发生在辽宁省朝阳市的一次冰雹云天气过程,着重分析了催化云人工冰晶的微物理过程、空间分布和谱型,以及对冰相降水粒子的贡献。数值试验表明,自然雹云模拟结果与观测事实相吻合,说明改进后的模式对冰雹云具有较可靠的模拟能力。模拟分析表明,冻滴是该例自然雹云冰雹胚胎的主要来源,对该冰雹云进行AgI催化可明显地减少降雹量,特别是在云中冰雹形成初期进行催化防雹效果最好,既可产生最大的防雹作业效果又不至于过度减少降雨量。催化减雹的主要原因是催化显著地减少了云中冻滴向冰雹胚胎的转化总量。进一步研究发现,人工冰晶在云的不同阶段对各种冰相降水粒子的贡献是不同的。人工冰晶对雪花总质量的贡献较小,对霰总质量的贡献有所增大,而对冻滴总质量的贡献较大。模拟的冰晶粒子谱可较好地反映出人工冰晶谱型较窄,浓度较大,尺度较小的特征。  相似文献   

2.
三维冰雹云数值催化模式改进与个例模拟研究   总被引:9,自引:0,他引:9  
李兴宇  洪延超 《气象学报》2005,63(6):874-888
鉴于播撒冰核形成的冰晶与自然冰晶谱型不同,对三维冰雹云催化模式人工引晶物理过程参数化部分进行了改进,将人工引入的冰晶单独作为预报量处理,导出人工冰晶与其他粒子发生的微物理过程的参数化方程。分析了改进模式的催化功能及人工冰晶的微物理过程及其在催化防雹中的作用。结果表明,在同样催化条件下,改进模式的催化效果优于原模式。水汽在碘化银粒子上核化是产生人工冰晶的主要过程。人工冰晶的空间分布特征表明,它与云水和雨水接触的比例要比自然冰晶高得多,因此人工冰晶收集过冷云水增长是其与自然冰晶最大的差别。与自然冰晶相比,人工冰晶向霰转化的数量多,通过人工冰晶形成的冻滴也多。自动转化是消耗人工冰晶的最重要的物理过程。人工冰晶减雹机制是:对雹云催化后,人工冰晶增加使雪、霰和冻滴增加,转化成冰雹的数量也增加,冰雹的尺度减少,降雹强度和降雹动能通量就减少。  相似文献   

3.
播撒碘化银粒子进行人工防雹的数值试验   总被引:16,自引:13,他引:16  
黄燕  徐华英 《大气科学》1994,18(5):612-621
本文在二维完全弹性冰雹云数值模式中,引入冰晶浓度和播撒物质AgI粒子的守恒方程,建立了一个二维催化模式,考虑了人工冰核的三种成核机制,即凝华核化(包含凝结—冻结核化)及与云、雨滴的接触冻结核化,模拟了几种不同冰雹云、不同催化方案下的人工防雹催化效果,指出了防雹的最佳催化方案和适宜催化作业的冰雹云条件。  相似文献   

4.
利用全弹性三维冰雹云数值模式,对2016年6月5日河南三门峡单体雹云个例进行模拟,将催化防雹的方式、时间、区域、剂量指标动态化组合形成81种方案,从而更高效、更精细地探究能够产生显著防雹效果的作业指标值域,探究催化防雹作业指标的最佳组合方案。结果表明:(1)减雹效果显著的催化方式、区域、剂量非固定单一指标,而催化在雹云初期内越早越好;催化防雹的显著效果取决于适合冰雹个体的各催化作业指标的优化组合。在雹云形成最早期,使用合理值域内的最大剂量对过冷水含量中心进行垂直催化,可使减雹效果最显著。(2)催化防雹后降雹量的减少转化为降雨量的增加,总降水量随之增加。(3)霰转化成冻滴、雹粒撞冻过冷云水增长二者的减少是冰雹时空积分总量减少的重要因素。(4)试验获得的8种减雹效果显著方案,其冰雹含水量极大值较未催化方案均减少80%;催化防雹对冰雹含水量极大值的分布位置影响很小。  相似文献   

5.
利用中国科学院大气物理研究所开发的三维全弹性冰雹云模式,对2006年7月5日山东境内一次以冰雹、雷雨大风为主的强对流过程进行模拟,分析了冰雹的形成机制。结果表明:79%左右的冰雹胚胎是霰,雹胚以霰为主,霰主要来自于冰雪晶与过冷雨水碰撞冻结以及雪的自动转换过程,霰形成后主要靠碰并过冷云水、雨水增长,而冰雹主要质量来源是霰的自动转化以及碰并过冷云水增长。人工催化试验表明:在强对流云中冰雹含量达到0.1 g·m-3前1~4 min进行催化,能有效抑制冰雹粒子的增长,在过冷水含量中心(5.5 km)上方1.0~1.5 km催化防雹效果较好,在其下方催化防雹效果较差;剂量越大防雹效果越好。AgI主要以凝华核的作用产生人工冰晶,冰晶凝华增长导致过冷云水含量降低。催化后雹胚特别是霰胚的数量增多,对过冷云水的竞争增强,其平均尺度、质量均减小,降低了雹胚向冰雹的转化率。冰雹碰并过冷云水增长也被减弱,导致冰雹总质量进一步减少。  相似文献   

6.
三维冰雹云催化数值模式   总被引:89,自引:10,他引:79  
洪延超 《气象学报》1998,56(6):641-653
为了研究冰雹形成机制、催化防雹机制和通过数值试验获得冰雹云优化催化技术,在以前工作的基础上,发展了一个3维弹性冰雹云催化数值模式。模式考虑了冰雹云中详细的微物理过程,各种粒子采用双变参数谱,将云中水物质分成水汽、云水、雨水、冰晶、雪、霰、冻滴和雹8类,可以预报粒子的比浓度和比含量,尤其可以计算以霰或冻滴为胚胎的雹块的数量,非常适合研究冰雹的形成机制。此外,建立了催化剂AgI的守恒方程,考虑了人工冰核的凝华核化及与云、雨滴接触的冻结核化过程,并用地面降雹动能通量检验催化防雹效果,因此,也可以研究催化防雹机制和对雹云的催化技术。  相似文献   

7.
利用三维全弹性冰雹云模式,对2008年5月24日山东境内一次受高空冷涡影响的大范围冰雹天气过程进行模拟,分析了冰雹的形成机制和催化防雹机理。结果表明:该过程过冷雨水中心位于最大上升气流中心下方,不存在过冷雨累积区,过冷雨水含量最大值仅为4.9gm-3,但雹云中过冷雨水含量仍然丰富,对雹胚的形成及增长起着重要作用。雹胚以冻滴为主,冻滴胚来源于冰雪晶与过冷雨水碰撞冻结以及雨滴核化过程。冻滴形成后主要以碰并过冷雨水、云水增长。冻滴胚自动转化过程是冰雹数量、质量的主要来源;冰雹形成后,前期主要靠碰并冻滴、霰和过冷雨水增长,后期主要靠碰并过冷云水增长。催化试验表明,播撒57.5g催化剂足以通过"竞争"减雹50%以上,增加AgI剂量,防雹的同时能够兼顾增雨。催化剂用量为230g时,催化后液态降水有所增加,固态降水量及占总降水量的比例减少显著,特别是冰雹。AgI主要以凝华核的作用产生人工冰晶,冰晶凝华增长导致过冷云水、雨水含量降低。催化后雹胚特别是冻滴胚数量增多,对过冷云水、雨水的竞争增强;其平均尺度、质量的减小,降低了向冰雹的转化率。冰雹碰并过冷云水、雨水增长过程被减弱,导致冰雹总质量进一步减少,达到消雹目的。  相似文献   

8.
2010年6月18日苏北一次强降雹过程及其催化数值模拟   总被引:2,自引:1,他引:1  
结合实况资料,应用三维对流云模式,对2010年6月18日苏北地区一次持续时间长达5h的强降雹过程进行数值模拟研究.结果表明,模式模拟出了雹云的3次涌升、降雹过程及雷达回波特征.冰雹来自霰的转化,主要靠碰冻过冷云水和雨水增长.催化试验表明,地面降雹刚形成或降雹强度刚增强时,在过冷雨水中心区播撒AgI,减雹效果显著,最大减雹量可达21.1%;催化后,霰的数量增加、尺度减小,导致霰向雹的自动转化减少,且大量小尺度霰成为雹胚后,争食云水,增长受阻.  相似文献   

9.
不同云底温度雹云成雹机制及其引晶催化的数值研究   总被引:24,自引:1,他引:23  
用二维准弹性冰雹云模式模拟了中国不同地区的冰雹云的成雹机制和人工引晶催化的效果,结果表明:强对流云中自然初始降水元的形成主要同云雨自动转化相关;云底温度较低的冰雹云的雹胚形成以云霰转化过程为主,暖云底的雹云则以雨霰转化为主。人工引晶的作用有三:(1)加强云中冰霰转化过程,雹胚过多争食防雹;(2)促进雨霰转化过程,使雹胚浓度增加,并且减少过冷雨滴,抑制冰雹碰冻过冷雨滴的增长;(3)使云的下部霰量增加,降低降水粒子的增长轨迹,阻碍霰雹的增长。多次催化有时比一次大剂量催化的防雹增雨效果好。  相似文献   

10.
利用三维冰雹云模式对2013年4月29日西昌一次降雹过程进行催化数值模拟,根据碘化银的催化时间、催化高度、催化用量和催化方式开展一系列防雹试验。结果表明:选择合适的催化时间、催化剂量、催化位置及催化方式,可以达到最佳防雹效果;通过对催化例和未催化例的冰雹形成机制对比分析得出,在播撒碘化银后,激发了"有利竞争",雹块不能长大;霰胚的减少及冰雹碰并云水的减少,导致降雹减少。  相似文献   

11.
In order to study mechanisms of hailstone formation and hail suppression with seeding and toobtain optimum seeding technique for hail cloud,a 3-D compressive numerical seeding model forhail cloud is developed.The water substance in hail cloud is divided into 8 categories,i.e.,watervapor,cloud droplet,raindrop,ice crystal,snow.graupel,frozen drop and hail,and the detailedmicrophysical processes are described in a spectrum with two variable parameters and morereasonable particle number/size distributions.Then,the model is able to predict concentration andwater content of various particles.Especially.it can calculate the number of hailstones whosecores are graupel or frozen drop and apply to study mechanism of hailstone formation.Additionally,a conservative equation of AgI as seeding or glacigenous agent is found andnucleation by condensation of artificial nucleus,and nucleation by freezing of cloud droplet or raindrop which contact with AgI particle are considered.The dynamic energy flux of hail shooting onground is used to verify seeding effect.Therefore the model is also used to study mechanism of hailsuppression with seeding and the seeding technique,  相似文献   

12.
In order to study mechanisms of hailstone formation and hail suppression with seeding and to obtain optimum seeding technique for hail cloud,a 3-D compressive numerical seeding model for hail cloud is developed.The water substance in hail cloud is divided into 8 categories,i.e.,water vapor,cloud droplet,raindrop,ice crystal,snow.graupel,frozen drop and hail,and the detailed microphysical processes are described in a spectrum with two variable parameters and more reasonable particle number/size distributions.Then,the model is able to predict concentration and water content of various particles.Especially.it can calculate the number of hailstones whose cores are graupel or frozen drop and apply to study mechanism of hailstone formation.Additionally,a conservative equation of AgI as seeding or glacigenous agent is found and nucleation by condensation of artificial nucleus,and nucleation by freezing of cloud droplet or rain drop which contact with AgI particle are considered.The dynamic energy flux of hail shooting on ground is used to verify seeding effect.Therefore the model is also used to study mechanism of hail suppression with seeding and the seeding technique.  相似文献   

13.
为了研究吸湿性催化剂、碘化银催化剂及两者的联合催化效果,利用双参数三维对流云催化模式,对浙江南部一次对流云降雨过程分别进行盐粉暖云催化、碘化银冷云催化和冷暖混合催化试验,对比研究不同催化方案对对流云降雨的可能影响。结果表明:盐粉催化导致先增雨后减雨,主要通过盐溶滴与云滴碰并增长,及雨滴碰并和霰粒子碰冻过程消耗。在上升气流区和降雨前期进行催化的增雨效果更好,30 μm粒径的盐粉催化剂量为12.5/L时,可增加降雨量17.8%。在降雨过程的不同发展阶段进行AgI催化,表现出先减雨后增雨的催化效果。盐粉和碘化银的联合催化,由于两者催化效果的不同步,使得不同吸湿性催化剂和碘化银催化剂量配置会导致不同的催化效果。当30 μm的盐粉,催化剂量12.5/L,联合碘化银100/L的冷区催化,可取得19%的增雨效果。  相似文献   

14.
陈宝君  肖辉 《大气科学》2007,31(2):273-290
利用中国科学院大气物理研究所开发的三维全弹性冰雹云模式,对美国对流降水协作试验(CCOPE)期间观测的1981年8月1日雹云进行模拟,讨论在过冷雨水低含量条件下冰雹形成和增长机制及其碘化银催化效果。结果表明:(1) 自然云的模拟与观测事实一致,如最大上升气流速度、云顶高度、流场结构以及雹胚组成等。(2) 雹胚以霰为主,霰主要来自冰雪晶与过冷小水滴的碰冻,其次来自雪的积聚转化;霰、冻滴和冰雹在形成后主要靠碰并过冷云水增长。(3)人工催化试验表明,碘化银主要以凝华核(包括凝结-冻结)的作用产生大量的人工冰晶,加速了过冷水向冰晶的转化,过冷云水因而大量减少;催化后霰和冻滴的数浓度增大,对过冷云水的竞争增强,其平均尺度减小导致转化成雹的数量减少;冰雹碰冻过冷云水的增长在催化后也被削弱,导致冰雹总质量进一步减少。此外,催化后降雨量也显著减少。  相似文献   

15.
冰雹云中微物理过程研究   总被引:26,自引:7,他引:19  
利用三维冰雹云模式通过实例模拟研究了云中冰相物理过程,结果表明,云中粒子产生有一源地,在雹云发展阶段早期,霰、冻滴,雹和雨水的极大产生率都位于6.0 km高度附近,这里是雹胚及冰雹形成的源区,从"利益竞争"概念出发,人工防雹的催化部位应在此高度附近;粒子产生高度与其源项发生高度及主要增长方式有关,粒子产生和增长过程在云的发展不同阶段也是不同的.在冰雹形成过程中,作为雹胚的霰和冻滴主要通过撞冻过冷水增长.撞冻增长占增长量的大部分,云中存在丰富的过冷水对冰雹胚胎和冰雹形成、增长都是十分重要的.在"冰晶-过冷水-雹胚-冰雹"这一链环中,没有过冷水参与很难形成强烈降雹.通过两例雹云的对比研究,发现若雹云云底温度降低和湿度增大,由于霰撞冻过冷水尤其是撞冻过冷云水增长量大幅度提高,霰的尺度加大,提高向冰雹的转化率,使霰胚数量大大增加.  相似文献   

16.
减弱对流云降水的AgI催化原理的数值模拟研究   总被引:3,自引:0,他引:3  
楼小凤  孙晶  史月琴  张邢 《气象学报》2014,72(4):782-793
在对流云模式中增加了AgI两个预报量,耦合了考虑受水汽过饱度和温度影响的4种核化机制的AgI催化模块,使其具备了对AgI类催化剂的模拟能力,能够研究AgI类催化剂对对流云系统的影响。利用该模式对一次华南对流云降水过程进行了AgI催化数值模拟试验,对人工减缓对流云降水的可能性及原理进行了研究。模拟结果表明,在适当的时机对适当的部位进行大剂量的催化,可以减少总降水量,也可以减少最大降水中心的雨强。当催化浓度达到2×10~8 kg~(-1)时,可以减少32%的降水量,具备有效减缓对流云降水的可能性。大剂量催化后,大量的AgI粒子在冷区核化后,消耗了大量的过冷水。催化后霰粒子的落速和雨水的落速减小。催化阶段由于霰融化成雨水减少而使降水减弱。催化结束后在霰融化成雨水增多的情况下,雨水的蒸发大幅增加,从而导致了降水量的持续减少。AgI在模拟的强对流云中主要以受过饱和度影响的凝结冻结和催化剂长时间作用的浸没冻结这两种方式成核。研究所用催化方法在外场作业中具有技术可行性。  相似文献   

17.
人工防雹实用催化方法数值研究   总被引:15,自引:3,他引:12  
目前,我国普遍采用高炮和火箭两种催化工具进行人工防雹,但就如何提高这两种作业工具的有效性还缺乏系统的研究.作者利用三维冰雹云数值催化模式,选取1999年7月18日陕西省旬邑地区的冰雹云作为试验个例,分别就高炮催化不同的作业时间、催化剂量、作业部位、催化方式等,以及对火箭催化所携带的高效AgI焰剂的成核率与火箭在作业过程中以不同的发射距离、发射仰角和当火箭方位角发生偏离后对地面防雹效果的影响进行数值模拟,以期为提高防雹效果提供一些技术参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号