首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emission of nitrous oxide from temperate forest soils into the atmosphere   总被引:5,自引:0,他引:5  
N2O emission rates were measured during a 13-month period from July 1981 till August 1982 with a frequency of once every two weeks at six different forest sites in the vicinity of Mainz, Germany. The sites were selected on the basis of soil types typical for many of the Central European forest ecosystems. The individual N2O emission rates showed a high degree of temporal and spatial variabilities which, however, were not significantly correlated to variabilities in soil moisture content or soil temperatures. However, the N2O emission rates followed a general seasonal trend with relatively high values during spring and fall. These maxima coincided with relatively high soil moisture contents, but may also have been influenced by the leaf fall in autumn. In addition, there was a brief episode of relatively high N2O emission rates immediately after thawing of the winter snow. The individual N2O emission rates measured during the whole season ranged between 1 and 92 g N2O-N m–2 h–1. The average values were in the range of 3–11 g N2O-N m–2 h–1 and those with a 50% probability were in the range of 2–8 g N2O-N m–2 h–1. The total source strength of temperate forest soils for atmospheric N2O may be in the range of 0.7–1.5 Tg N yr–1.  相似文献   

2.
Field measurements of NO and NO2 emissions from soils have been performed in Finthen near Mainz (F.R.G.) and in Utrera near Seville (Spain). The applied method employed a flow box coupled with a chemiluminescent NO x detector allowing the determination of minimum flux rates of 2 g N m-2 h-1 for NO and 3 g m-2 h-1 for NO2.The NO and NO2 flux rates were found to be strongly dependent on soil surface temperatures and showed strong daily variations with maximum values during the early afternoon and minimum values during the early morning. Between the daily variation patterns of NO and NO2, there was a time lag of about 2 h which seem to be due to the different physico-chemical properties of NO and NO2. The apparent activation energy of NO emission calculated from the Arrhenius equation ranged between 44 and 103 kJ per mole. The NO and NO2 emission rates were positively correlated with soil moisture in the upper soil layer.The measurements carried out in August in Finthen clearly indicate the establishment of NO and NO2 equilibrium mixing ratios which appeared to be on the order of 20 ppbv for NO and 10 ppbv for NO2. The soil acted as a net sink for ambient air NO and NO2 mixing ratios higher than the equilibrium values and a net source for NO and NO2 mixing ratios lower than the equilibrium values. This behaviour as well as the observation of equilibrium mixing ratios clearly indicate that NO and NO2 are formed and destroyed concurrently in the soil.Average flux rates measured on bare unfertilized soils were about 10 g N m-2 h-1 for NO2 and 8 g N m-2 h-1 for NO. The NO and NO2 flux rates were significantly reduced on plant covered soil plots. In some cases, the flux rates of both gases became negative indicating that the vegetation may act as a sink for atmospheric NO and NO2.Application of mineral fertilizers increased the NO and NO2 emission rates. Highest emission rates were observed for urea followed by NH4Cl, NH4NO3 and NaNO3. The fertilizer loss rates ranged from 0.1% for NaNO3 to 5.4% for urea. Vegetation cover substantially reduced the fertilizer loss rate.The total NO x emission from soil is estimated to be 11 Tg N yr-1. This figure is an upper limit and includes the emission of 7 Tg N yr-1 from natural unfertilized soils, 2 Tg N yr-1 from fertilized soils as well as 2 Tg N yr-1 from animal excreta. Despite its speculative character, this estimation indicates that NO x emission by soil is important for tropospheric chemistry especially in remote areas where the NO x production by other sources is comparatively small.  相似文献   

3.
Carbonyl sulfide emissions from biomass burning have been studied during field experiments conducted both in an African savanna area (Ivory Coast) and rice fields, central highland pine forest and savanna areas in Viet-Nam. During these experiments CO2, CO and C2H2 or CH4 have also been also monitored. COS values range from 0.6 ppbv outside the fires to 73 ppbv in the plumes. Significant correlations have been observed between concentrations of COS and CO (R 2=0.92,n=25) and COS and C2H2 (R 2=0.79,n=26) indicating a COS production during the smoldering combustion. COS/CO2 emission factors (COS/CO2) during field experiments ranged from 1.2 to 61×10–6 (11.4×10–6 mean value). COS emission by biomass burning was estimated to be up to 0.05 Tg S/yr in tropics and up to 0.07 Tg S/yr on a global basis, contributing thus about 10% to the global COS flux. Based on the S/C ratio measured in the dry plant biomass and the COS/CO2 emission factor, COS can account for only about 7% of the sulfur emitted in the atmosphere by biomass burning.  相似文献   

4.
Aerosol chemical composition and trace gas measurements were made at twolocations on the northeastern peninsula of Tenerife during the ACE-2HILLCLOUD experiment, between 28 June and 23 July 1997. Measurementswere made of coarse (#gt;2.5 m aerodynamic diameter) and fine (#lt; 2.5m) aerosol Cl, NO3 ,SO4 2–, non-sea saltSO4 2– (NSSS),CH3SO3 (MSA) andNH4 +, and gas phase dimethylsulphide (DMS), HCl,HNO3, SO2, CH3COOH, HCOOH andNH3. Size distributions were measured using a cascadeimpactor. Results show that in marine air masses NSSS and MSA wereformed via DMS oxidation, with additional NSSS present in air massescontaining a continental component. Using a Eulerian box model approachfor aerosols transported between upwind and downwind sites, a mean NSSSproduction rate of 4.36 × 10–4 gm–3 s–1 was calculated for daytimeclear sky periods (highest insolation), with values for cloudy periodsduring daytime and nighttime of 3.55 × 10–4 and2.40 × 10–4 g m–3s–1, respectively. The corresponding rates for MSA were6.23 × 10–6, 8.49 × 10–6and 6.95 × 10–6 g m–3s–1, respectively. Molar concentration ratios forMSA/NSSS were 8.7% (1.8–18.2%) and 1.9%(1.3–3.5%) in clean and polluted air masses, respectively.Reactions occurring within clouds appeared to have a greater influenceon rates of MSA production, than of NSSS, while conversely daytime gasphase reactions were more important for NSSS. For MSA, nighttimein-cloud oxidation rates exceeded rates of daytime gas phase productionvia OH oxidation of DMS. NSSS, MSA and ammonium had trimodal sizedistributions, with modes at 0.3, 4.0 and >10.0 m (NSSS andNH4 +), and 0.3, 1.5 and 4.0 m (MSA). Nosignificant production of other aerosol species was observed, with theexception of ammonium, which was formed at variable rates dependent onneutralisation of the aerosol with ammonia released from spatiallynon-uniform surface sources. Seasalt components were mainly present incoarse particles, although sub-micrometre chloride was also measured.Losses by deposition exceeded calculated expectations for all species,and were highest for the seasalt fraction and nitrate.  相似文献   

5.
Humans seem to have doubled the global rate of terrestrial nitrogen fixation. Globally 50–70% (85 Tg, 1 Tg=1012 g) of the nitrogen supplied in fertilizer (80 Tg N/a) and leguminous crops (40–80 Tg N/a) are used to feed cattle. The aim of the present study was to derive some estimates of global N2O production from animal manure. As the parameter giving the most stable numerical basis for regional and global extrapolation we adopted the molar emission ratios of N2O to NH3. These ratios were measured in cattle, pig and chicken housings with different manure handling systems, in dung-heaps and in liquid manure storage tanks. Individual molar emission ratios from outside manure piles varied over two orders of magnitude, strongly dependent on the treatment of the manure. A median emission ratio of 1.6×10-2 (n=65) was obtained in cow-sheds with slatted floors and liquid manure stored underneath and a median ratio of 24×10-2 (n=31) was measured in a beef cattle housing with a solid manure handling system.We next extrapolated to global NH3 emissions from those estimated for Europe, using N uptake by the animals as a scaling factor. Multiplication with observed N2O to NH3 ratios next provided some estimates of regional and global N2O emissions. To account for the great variability of the emission ratios of N2O/NH3, we developed upper and lower case emission scenarios, based on lower and upper quartiles of measured emission ratios. The global emission from cattle and swine manure is in the range of 0.2–2.5 Tg N-N2O/a, representing 44+-39% of the annual atmospheric accumulation rate. This N2O emission arises from about 40 Tg N/a of cattle and pig manure stored in or at animal housings. We did not account for N2O emissions from another 50 Tg N/a excreted by grazing cattle, goats and sheep, and application of the manure to agricultural fields. Our study makes it clear that major anthropogenic N2O emissions may well arise from animal manure. The large uncertainty of emission ratios, which we encountered, show that much more intense research efforts are necessary to determine the factors that influence N2O emissions from domestic animal manure both in order to derive a more reliable global estimate of N2O release and to propose alternative waste treatment methods causing smaller N2O releases. In our studies we found large enhancements in N2O releases when straw was added to the manure, which is a rather common practice. In view of the ongoing discussion in Europe to re-install the traditional solid manure system (bed down cattle) for environmental and animal welfare reasons, it is noteworthy that our measurements indicate highest N2O release from this particulary system.In a similar manner, but based on a smaller data set, we also estimated the release of CH4 from cattle and swine manure and from liquid manure only to be about 9 Tg/year in good agreement with the estimate by the Environmental Protection Agency (1994) of 8.6+-2.6 Tg/year. A total annual methane release as high as 34 Tg/a was derived for solid and liquid cattle and pig manure from animals in housings.  相似文献   

6.
Two types of neutral planetary boundary layer (PBL) are distinguished:truly neutral – developed against a neutrally stratified free flow, and conventionally neutral – developed against a background stable stratification. Atmospheric PBLs treated asneutral are almost always conventionally neutral. Theoretical reasoning and results from large-eddy simulation (LES) show that A and B coefficients of the Rossby-number similarity theory are not constants. The same is true for thecoefficient Ch in the Rossby–Montgomery formula for the neutral boundary-layer depth h = Chu*/|f|, where u* is the friction velocity. Contrary to classical ideas, A, B and Ch depend on the ratio N N/|f| of the free-flow Brunt–V*auml;isäl ä frequency N to the absolute value of the Coriolis parameter |f|. This new development can explain why atmospheric and LES estimates of A, B and Ch appear inconsistent. It results from neglecting the fact that atmospheric data for N 102 were compared with LES data for N = 0, violating an obvious requirement of similarity with respect to N.  相似文献   

7.
Rain and air of Florence have been collected in a continuous way andanalysed by flow analysis spectrofluorimetric methods for formaldehydeand hydrogen peroxide. Diurnal and seasonal variations were observed;the mean/maximum concentrations of all data (as gm–3) are 3.3/23.4 for HCHO and 0.4/4.93 forH2O2. The effect of external sources and ofphotochemical reactions produces periods of positive and negativecorrelations for these compounds. The mean/maximum rain concentration ofall data are 98/443 g l–1 for HCHO and 84/685 g l–1 for H2O2. Concentrationratios rain/air and discrepancies to Henry's Law equilibrium arediscussed.  相似文献   

8.
Levels of formate and acetate in dew were measured at Dayalbagh, India, usingsurrogate surfaces. The dew formed per night ranged between 0.06 lm–2 and 1.38 l m–2, with an average of 0.59l m–2. pH ranged between 6.7 and 7.4. Mean concentrations offormate and acetate in dew were 10.2 ± 10.2 eql–1 and 7.5 ± 4.5 eq l–1,respectively. The correlation coefficient between the two ions was 0.80 (p =0.001), which suggested that concentrations of these species in dew are linkedtogether. They have either common or different sources with fairly constantstrengths or products of same reaction. Good correlation of formate andacetate with Ca (r = 0.82 and r = 0.70, respectively) and Mg (r = 0.74 and r= 0.71, respectively) suggested that these ions may be associated with Ca andMg after the neutralization process. Deposition rates for formate and acetatein dew per night were 10.2 ± 7.22 mol m–2 pernight and 4.6 ± 2.2 mol m–2 per night,respectively. The theoretical Henry's law constant (K* H)and the field-observed Henry's law coefficient (K* H) ascalculated from concurrent measurements of gas phase and dew for both acidsshowed large discrepancies of three orders of magnitude.  相似文献   

9.
A novel fully-automated airborne gas chromatograph for in situmeasurements of long-lived stratospheric tracers hasbeen developed, combining the high selectivity of a megabore PLOTcapillary column with recently developed sampling and separationtechniques. The Gas cHromatograph for theObservation of Stratospheric Tracers (GHOST)has been successfully operated during three STREAM campaigns(Stratosphere TRoposphere Experiment byAirborne Measurement) onboard a Cessna Citation IIaircraft in two different modes: Either N2O andCF2Cl2(CFC-12) or CFC-12 and CFCl3 (CFC-11) have been measuredsimultaneously, with a time resolution of 2 min for both modes.Under flight conditions the instrument precision (1) forthese species is better than 0.9%, and the accuracy(1) is better than 2.0% of the tropospheric values ofall measured compounds. The detection limits (3) arebelow 28 ppb for N2O, 14 ppt for CFC-12, and 8 ppt forCFC-11, respectively, i.e., well below 10 % of the troposphericvalues of all measured compounds. Post-mission optimization of thechromatographic separation showed a possible enhancement of thetime resolution by up to a factor of 2, associated with acomparable increase in precision and detection limit. As test ofactual performance of GHOST results from an in-flight N2Ointercomparison with a tunable diode laser absorptionspectrometer (TDLAS) are presented. They yield an excellentagreement between both instruments. Furthermore, on the basis ofthe hitherto most extensive set of upper tropospheric and lowerstratospheric data, the relative stratospheric N22O lifetime isre-assessed. When referenced to the WMO reference CFC-11 lifetimeof 45 ± 7 years an N2O lifetime of 91 ± 15 yearsis derived, a value substantially smaller than the WMO referencelifetime of 120 years. Moreover, this value implies astratospheric N2O sink strength of 16.3 ± 2.7 Tg (N)yr–1 which is 30% larger than previous estimates.  相似文献   

10.
The exchange of NO3 radicals with the aqueous-phase was investigated at room temperature (293 K) in a series of wetted denuders. From these experiments, the uptake coefficient of NO3 was determined on 0.1 M NaCl solutions and was found to be (NO3) 2 × 10-3 in good agreement with recent studies. The Henry coefficient of NO3 was estimated to be KH(NO3) = 1.8 M · atm-1, with a (2) uncertainty of ±3 M · atm-1. From the upper limit for the Henry coefficient (KH = 5 M · atm-1) and available thermodynamic data, the redox potential of dissolved NO3/NO 3 is estimated to be in the range of 2.3 to 2.5 V. This range is at the lower boundary of earlier estimates. The results are discussed in the light of a recent publication. Based on our data and a model of the transport and chemistry in the liquid film, an upper limit is derived for the product of the Henry coefficient KH and the rate coefficient k 10 of the potential reaction NO3 + H2O HNO3 + OH. For KH = 0.6 M · atm-1, we find k 10 < 0.05 s-1 · atm-1, i.e., about 100 times smaller than what was suggested by Rudich and co-workers. Because of its small solubility, heterogeneous removal of NO3 is only important under conditions where the dissolved NO3 is removed quickly from equilibrium, for example by reactions with Cl or HSO 3 ions in the liquid-phase. Otherwise, heterogenous removal should mainly proceed via N2O5.  相似文献   

11.
We present the first application of a multi-stage impactor to study volcanic particle emissions to the troposphere from Masaya volcano, Nicaragua. Concentrations of soluble SO4 2–,Cl, F, NO3 , K+, Na+,NH4 +, Ca2+ and Mg2+ were determined in 11 size bins from 0.07 m to >25.5 m. The near-source size distributions showed major modes at 0.5m (SO4 2–, H+,NH4 +); 0.2 m and 5.0 m (Cl) and 2.0–5.0 m(F). K+ and Na+ mirrored the SO4 2– size-resolvedconcentrations closely, suggesting that these were transported primarily asK2SO4 and Na2SO4 in acidic solution, while Mg2+ andCa2+ presented modes in both <1 m and >1 m particles. Changes in relative humidity were studied by comparing daytime (transparent plume) and night-time (condensed plume) results. Enhanced particle growth rates were observed in the night-time plume as well as preferential scavenging of soluble gases, such as HCl, by condensed water. Neutralisation of the acidic aerosol by background ammonia was observed at the crater rim and to a greater extent approximately 15 km downwind of the active crater. We report measurements of re-suspended near-source volcanic dust, which may form a component of the plume downwind. Elevated levels ofSO4 2–, Cl, F,H+, Na+, K+ and Mg2+ were observed around the 10 m particle diameter in this dust. The volcanic SO4 2– flux leaving the craterwas 0.07 kg s–1.  相似文献   

12.
Current inventories of terpenes released from vegetation consider only the short-term influences of light and temperature on emissions to simulate temporal variation during the year. We studied whole canopy emissions from young Pinus pinea during a 15-month enclosure in greenhouse chambers and examined data for other long-term influences. Mean daytime emission rates strongly increased during spring, reached an annual maximum of 200 pmol m–2 total needle area s–1 (1.1 g g–1 leaf dry weight h–1) between mid June and mid August, strongly declined in fall and reached an annual minimum of 1 pmol m–2 s–1 (0.006 g g–1 h–1) between January and February. Normalization to standard temperature and light conditions did not change the annual time course of emissions, but reduced summer to winter ratio from a factor of 200 to about 45. Seasonal variation was characterized also by changes in terpene composition: among the six main compounds, three (t--ocimene, linalool, 1.8-cineol) were exclusively emitted during sunlit hours in the main vegetation period, whereas the other (limonene, -pinene, myrcene) were emitted day and night and throughout the seasons. The results suggest that different terpene sources in P. pinea foliage exist and that a great part of the annual emission course observed here results from seasonal influences on these sources. A global model to simulate plant emissions is proposed, which accounts for seasonal influences on emissions in addition to the short-term effects of temperature and light. The model is tested on field data and discussed for its general application.  相似文献   

13.
A method for the estimation of the reaction probability of the heterogeneous N2O5+H2O 2HNO3 reaction using the deposition profile in a laminar flow tube, in which the walls are coated with the condensed aqueous phase of interest, is presented. The production of gas phase nitric acid on the surface followed by its absorption complicates the deposition profiles and hence the calculation of the reaction probability. An estimation of the branching ratio for this process enables a more appropriate calculation to be carried out. Reaction probabilities of N2O5 on substances including some normally constituting atmospheric aerosols, NaCl, NH4HSO4, as well as Na2CO3 are estimated and found to depend on relative humidity and characteristics of the coating used. These fell within the range (0.04–2.0)×10–2.  相似文献   

14.
The rate of formation of N2O via the thermochemically favourable reaction of NO3(A2E) with N2, which would represent an additional source of stratospheric N2O and therefore NOx, has been investigated. Mixtures of NO2+O3 in synthetic air were photolysed at 662 nm. No evidence was found for the production of N2O via this pathway, the upper limit for the quantum yield of nitrous oxide formation being % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqOXdy2aaSbaaSqaamaaBaaameaadaWgaaqaamaaBaaabaGaamOt% amaaBaaabaGaaGOmaiaad+eaaeqaaaqabaaabeaaaeqaaaWcbeaatu% uDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGqbaOGae8hzIqOa% aGimaiaac6cacaaI2aGaaiyjaaaa!4E60!\[\phi _{_{_{_{N_{2O} } } } } \le 0.6\% \]. However, a dark conversion of NOx to N2O was observed and is attributed tentatively to a heterogeneous reaction on the wall of the reaction vessel. This process, although most likely to be insignificant in the atmosphere, needs to be taken into consideration in laboratory investigations or field studies of N2O emission or deposition.  相似文献   

15.
An investigation of the influence of mineral dust ontrace gas cycles in the troposphere is carried out inthis study. A 3D regional scale atmospheric chemistrymodel (STEM-III) which includes aerosol processes isused for the numerical simulations for May 1987.Heterogeneous interactions between gaseous species(SO2, N2O5, HNO3, HO2andH2O2) and the dust particles are considered.Emissions of dust behind convective cold fronts aremodeled. The transport and distribution of mineraldust predicted from the model is compared withsatellite measurements (aerosol index from TOMS). Themodel is shown to capture the synoptic variability inthe observed aerosol index. Calculations show twomajor dust events in May 1987, during which thedust levels close to the source reach more than500 g/m3. The transport of dust is mostlyrestricted towards the north, with the net continentaloutflow of 6 Tg for the entire month. Results showthat the presence of mineral aerosol can greatlyimpact sulfate and nitrate distributions. Averagedover the month of May, the presence of dust isestimated to increase particulate sulfate and nitratelevels in east Asia by 40%. Furthermore, the sulfateand nitrate on the dust particles are predicted to beassociated with the coarse mode (3–5 m particlediameter), consistent with observations over Japan.The influence of mineral dust on the photochemicaloxidant cycle is also investigated. For the entiremonth, a5–10% decrease in boundary layer ozone ispredicted by the model closer to regions of higherdust levels. The ratio of nitric acid to NOx overmarine regions is reduced by a factor between 1 and 2in the boundary layer to more than 2 in the freetroposphere as a result of aerosol processes.  相似文献   

16.
Gas exchange experiments were conducted in the tropical Atlantic Ocean during a ship expedition with FS Meteor using a small rubber raft. The temporal change of the mixing ratios of CO, H2, CH4 and N2O in the headspace of a floating glass box and the concentrations of these gases in the water phase were measured to determine their transfer velocities across the ocean-atmosphere interface. The ocean acted as a sink for these gases when the water was undersaturated with respect to the mixing ratio in the headspace. The transfer velocities were different for the individual gases and showed still large differences even when normalized for diffusivity. Applying the laminar film model, film thicknesses of 20 to 70 m were calculated for the observed flux rates of the different gas species. When the water was supersaturated with respect to atmospheric CO, H2, CH4 and N2O, the transfer velocities of the emission process were smaller than those determined for the deposition process. In case of H2 and CH4, emission was even not calculable although, based on the observed gradient, the laminar film model predicted significant fluxes at the air-sea interface. The results are interpreted by destruction processes active within the surface microlayer.  相似文献   

17.
During April 1986, as part of an international arctic air chemistry study (AGASP-2), ground level observations of aerosol trace elements, oxides of sulphur and nitrogen and particle number size distribution were made at Alert Canada (82.5N, 62.3W). Pollution haze was evident as indicated by daily aerosol number (size > 0.15 m diameter) and SO4 = concentrations in the range 125 – 260 cm–3 and 1.6 – 4.5 g m–3, respectively. Haze and associated acidic gases tended to increase throughout the period. SO2 and peroxyacetylnitrate (PAN) mixing ratios were in the range 140 – 480 and 370 – 590 ppt(v), respectively. About 88% of the total end-product nitrogen was in the form of PAN. In air dried to 2% relative humidity by warming to room temperature, the aerosol mass size distribution had a major mode at 0.3 m diameter and a minor one at 2.5 m. Aerosol mass below 1.5 m was well correlated with SO4 =, K+ and PAN. There was a steady increase in the oxidized fraction of total airborne sulphur and nitrogen oxide throughout April as the sun rose above the horizon and remained above. The mean oxidation rate of SO2 between Eurasia and Alert was estimated as 0.25 – 0.5% h–1. The molar ratio of total nitrogen oxide to total sulphur oxide in the arctic atmosphere (0.67±0.17) was comparable to that in European emissions. A remarkably strong inverse correlation of filterable Br and O3 led to the conclusion that O3 destruction and filterable Br production below the Arctic surface radiation inversion is associated with tropospheric photochemical reactions involving naturally occurring gaseous bromine compounds.  相似文献   

18.
We present here experimental determinations of mass accommodation coefficients using a low pressure tube reactor in which monodispersed droplets, generated by a vibrating orifice, are brought into contact with known amounts of trace gases. The uptake of the gases and the accommodation coefficient are determined by chemical analysis of the aqueous phase.We report in this article measurements of exp=(6.0±0.8)×10–2 at 298 K and with a total pressure of 38 Torr for SO2, (5.0±1.0)×10–2 at 297 K and total pressure of 52 Torr for HNO3, (1.5±0.6)×10–3 at 298 K and total pressure of 50 Torr for NO2, (2.4±1.0)×10–2 at 290 K and total pressure of 70 Torr for NH3.These values are corrected for mass transport limitations in the gas phase leading to =(1.3±0.1)×10–1 (298 K) for SO2, (1.1±0.1)×10–1 (298 K) for HNO3, (9.7±0.9)×10–2 (290 K) for NH3, (1.5±0.8)×10–3 (298 K) for NO2 but this last value should not be considered as the true value of for NO2 because of possible chemical interferences.Results are discussed in terms of experimental conditions which determine the presence of limitations on the mass transport rates of gaseous species into an aqueous phase, which permits the correction of the experimental values.  相似文献   

19.
Gaseous nitrogen compounds (NO x , NO y , NH3, N2O) were measured at ground level in smoke plumes of prescribed savanna fires in Lamto, in the southern Ivory Coast, during the FOS/DECAFE experiment in January 1991. During the flaming phase, the linear regression between [NO x ] and [CO2] (differences in concentration between smoke plumes and atmosheric background) results volumic emission ratio [NO x ]/[CO2]=1.37×10–3 with only slight differences between heading and backing fires. Nearly 90% of the nitrogen oxides are emitted as NO. Average emission ratios of other compounds are: 1.91, 0.047, and 0.145×10–3 for NO y , NH3 and N2O, respectively. The emission ratios obtained during this field experiment are compred with corresponding values measured during former experiments with the same plant species in combustion chambers. An accurate determination of both the biomass actually burned and of the plant nitrogen content, allows an assessment of emission fluxes of N-compounds from Guinean savanna burns. Preliminary results dealing with the influence of fire on biogenic emissions from soils are also reported.  相似文献   

20.
We measured the emissions of volatile aliphatic amines and ammonia produced by the manure of beef cattle, dairy cows, swine, laying hens and horses in livestock buildings. The amine emissions consisted almost exclusively of the three methylamines and correlated with those of ammonia. The molar emission ratios of the methylamines to ammonia, and data on NH3 emissions from animal husbandry in Europe, together with global statistics on domestic animals, were used to estimate the global emissions of amines. Annual global methylamine-N input to the atmosphere from animal husbandry in 1988 was 0.15±0.06 TgN (Tg=1012 g). Almost 3/4 of these emissions consisted of trimethylamine-N. This represents about half of all methylamine emissions to the atmosphere. Other sources are marine coastal waters and biomass burning.Possible reaction pathways for atmospheric methylamines are shown. Among various speculative but possible products N2O and HCN are of interest because the emission of methylamines could contribute to the global budgets of these compounds. Maximum atmospheric N2O production from methylamines are below 0.4 Tg N/year, which is less than 10% of the annual N2O growth rate. Although we do not expect the methylamine emissions to contribute in a major way to the atmospheric N2O budget, more studies are needed to establish this conclusion beyond doubt. Similar conclusions hold for HCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号