首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 328 毫秒
1.
利用中国气象局MICAPS地面、高空等常规观测资料及欧洲中心ERA-Interim的0.25°(纬度)×0.25°(经度)逐6 h再分析资料,对2015年11月5日至7日影响北京、河北的一次降雪过程的环流形势和动热力物理量进行了诊断分析,揭示了降雪特征及其形成原因。环流形势分析发现,此次降雪是在高空两槽一脊叠加短波槽活动天气背景下的“回流型”降雪。500 hPa有西伯利亚脊的发展和内蒙古地区气旋性涡旋及其向南发展出的弱槽,使得偏北冷空气与西南暖气流在河北地区相遇,伴随低层700 hPa的低涡发展,造成了此次降雪天气。500 hPa多小槽波动东移,使得雨雪天气维持较长时间;700 hPa受偏南暖湿气流影响,850 hPa为偏东风,地面高压底部偏东风配合倒槽,有较好的上升运动和水汽输送条件;高湿的大气环境条件和低层水汽辐合及抬升为降雪发生提供了充沛的水汽;高低空急流的形成,与散度场、涡度场和垂直速度场的高低空耦合配置,为降雪天气的发生创造了动力条件。  相似文献   

2.
河套地区一次寒潮天气的环流背景及成因   总被引:3,自引:0,他引:3  
利用常规观测资料和MICAPS提供的相关资料,对2006年3月9—11日在河套地区发生的大范围大风、沙尘暴、寒潮天气的环流形势及物理量进行分析。分析表明:影响本次沙尘暴的高空系统是斜压性很强的蒙古横槽及北路冷空气南压形成的密集的高空锋区,地面蒙古气旋的暖性性质为沙尘暴的爆发提供了有利的热力条件;沙尘暴发生前期河套及上游地区干暖的气候条件及下垫面增厚的干土层及沙区,对沙尘暴的发生提供最基本的环境条件。另外,高空蒙古横槽南压、转竖是寒潮爆发南下的关键点;地面蒙古气旋的东移及地面冷高压中心强度达到1060.0hPa是寒潮爆发南下的必要条件;蒙古横槽诱发北路冷空气南压,使地面冷高压前沿气压梯度的不断加强加剧了寒潮爆发的速度。  相似文献   

3.
利用常规天气资料、美国NCEP/NCAR 1°×1°网格点逐6h再分析资料,运用天气学原理,对2012年1月16~21日新疆冬季一次超极地路径寒潮天气过程进行分析和总结。结果表明:本次过程是一次极地冷空气向南爆发影响新疆的寒潮天气,属于乌拉尔山脊类里咸海长脊型;寒潮发生在极涡偏在东北半球,超长波为三波的大背景下。过程期间欧亚范围维持两槽一脊的经向环流,欧洲与西伯利亚地区均为深厚的低压系统,里咸海长脊与乌拉尔山脊同位相叠加形成经向度超过35个纬距的暖性闭合高压,即乌拉尔山阻塞高压。随着乌拉尔山阻高不断向东南方向衰退,脊前强的北风带推动西西伯利亚横槽转竖南压引导极地冷空气向南爆发造成新疆大范围的寒潮天气。寒潮天气入侵新疆前后海平面气压中心强度分别为1047.5hPa和1071hPa。强的冷平流是气温骤降的主要原因。中高层偏西急流与近地面风场辐合形成的垂直环流为降雪提供必要的动力条件。降雪过程中,南北疆中低层增湿明显。北疆降雪水汽来源于咸海和巴湖,寒潮爆发后降雪成因归结于强的冷平流在动力作用下的冷凝降雪。数值预报性能检验来看,500hPa高度场预报ECWMF较T639精准且稳定性高,气压场和850hPa温度场预报T639优于ECWMF。  相似文献   

4.
利用高空、地面气象观测资料,对2017年2月20—22日青海省出现的一次寒潮天气过程进行分析。结果表明:此次寒潮过程是低槽东移型,500hPa低槽东移引导冷空气侵袭青海省,以及地面冷高压的东移南压是此次寒潮爆发的主要原因。前期气温回暖提供了充足的降温空间,强盛的冷平流造成青海北部地区气温骤降。  相似文献   

5.
利用常规地面、探空、卫星云图、各物理量场资料,对玉树地区3.28-3.29发生的一次强降雪天气过程进行了诊断分析。结果表明:500hPa高空图中,中高纬度的长波形势为两槽一脊型,低纬度南支槽发展旺盛,玉树州处在冷暖气流汇合时,易触发强降雪天气过程;高低空散度、涡度场配置为低空辐合、高空辐散,有利于降水天气过程的出现;造成此次强降雪天气的水汽来源于孟加拉湾地区,降水中心在水汽辐合最明显的地区。  相似文献   

6.
利用常规观测资料、自动站、T639客观分析资料,结合天气学原理和天气动力学诊断分析方法,对2012年12月20-23日巴音郭楞蒙古自治州(以下简称巴州)的寒潮天气过程的成因和降雪天气特征进行分析,并给出巴州降雪天气概念模型。结果表明:这次寒潮降雪过程是北欧阻塞高压向东南衰退,导致脊前横槽转成竖槽东南移,高空冷空气南压至40°N附近,造成巴州强降温、强降雪等寒潮天气,降雪阶段关键影响系统是700 hPa上的冷暖切变和风场辐合,水汽主要源自中低层西北方的经向和低层东南方的纬向输送;后续的冷凝降雪和阴雪阶段天气局地特征明显,水汽源自850 hPa至近地层局地的垂直输送。  相似文献   

7.
甘肃河西地区一次强寒潮天气个例诊断分析   总被引:1,自引:0,他引:1  
2008年4月19~20日,受西伯利亚东移南下的强冷空气影响,河西地区出现了自2001年以来最强的1次寒潮天气.利用MICAPS资料分析了这次强寒潮爆发时的环流形势演变特征.同时采用NCEP/NCAR 2.5°×2.5°每天4次再分析资料,计算了60~105°E、35~60°N区域内,4月15日08时~20日08时300 hPa高空急流,500 hPa涡度、温度平流、垂直速度,700 hPa水汽通量散度等物理量.结果表明:此次强寒潮的爆发与高空急流在东移南下过程中逐渐加强有关,500 hPa正涡度区与槽前锋区配合一致,更有利于引导强冷空气东移南下.低层强冷平流对地面加压降温作用至关重要,垂直速度与大气层结稳定度有关.700 hPa水汽通量散度场分布特征对寒潮天气条件下的降水形成有明显影响,水汽通量散度极小值区域均有降水,最大值区域无降水而有沙尘天气.  相似文献   

8.
应用常规地面、探空观测资料和NCEP 1°×1°再分析资料,对2011年11月28-29日山西低空偏东风暴雪天气结构特征进行了探讨。结果表明:(1)这次低空偏东风暴雪是由高空西风槽、低空切变线、地面回流和倒槽共同影响造成。降雪前约18 h,山西925~850 hPa上空出现东北风;降雪前约12 h,山西中南部地面出现较强东北风,强降雪期间地面东北风强劲;降水开始前,低空东北风是干冷性质,降水开始后低空东北风是湿冷垫。(2)暴雪的水汽来源主要是源于西太平洋的偏东风水汽输送在北部湾附近转向的西南水汽与南支槽前的西南气流在西南地区汇合北上,再与西风槽前西南水汽结合;强降雪出现在700 hPa水汽通量中心西北侧等值线密集区且风向气旋性辐合的偏南气流区域。(3)强降雪伴随山西上空深厚湿层、500 hPa以下明显水汽辐合,以及800 hPa以上对流层中强上升气流,而上升区下是明显的下沉气流,这是由低空偏东风的契入产生的。(4)强降雪期间300 hPa西风急流不断东移南压,山西位于其入口区右侧,出现强辐散,有利于地面河套倒槽发展、维持,以及垂直上升运动的增强。  相似文献   

9.
本文利用欧洲中期天气预报中心ERA-Interim全球再分析资料,常规地面、高空观测资料,及地面自动站观测资料,对2018年12月5~7日和27~29日四川盆地两次典型寒潮天气过程进行了对比分析。结果表明:两次过程均是在前期升温的基础上,500hPa欧亚中高纬度为一脊一槽,地面有强冷空气在中西伯利亚堆积,横槽转竖引导冷空气爆发南下造成的;冷空气爆发后,由于寒潮发生的环流背景、影响系统和冷平流强度、发展、路径不同,由此带来的天气现象和对四川盆地的影响也不同。两次过程中南支槽强度、移动速度和持续影响四川盆地时间存在明显不同,但当南支槽东移至85°E及以东位置时,南支槽显著加深,槽前强西南气流将暖湿水汽输送到四川盆地,并与南下的偏北冷气流交汇,导致四川盆地的降雨明显加强,降温幅度也加强。气温骤降,当盆地850hPa温度低于-5℃,1000hPa温度低于4℃,0℃层降到940hPa以下高度时,降水出现雨向雨夹雪或雪转换。   相似文献   

10.
2006年河套地区一次灾害天气过程诊断分析   总被引:2,自引:0,他引:2       下载免费PDF全文
应用MICAPS常规气象观测资料和NOAA-12及NOAA-17沙尘暴遥感监测图资料,对2006年4月10—12日发生在河套地区的一次灾害性天气进行诊断分析。结果表明:高空横槽转竖直接诱发寒潮爆发;中尺度切变线、强锋区、蒙古气旋和地面冷锋是引发沙尘暴的主要影响系统;特殊地形、气候条件和富含沙尘源的下垫面是形成沙尘暴的物质基础;高空冷中心强度达-45℃、地面冷高压中心强度达1 060.0 hPa是寒潮爆发的必要条件;沙尘暴发生过程中,各测站均出现了风速剧增、气压升高、气温下降和湿度增大等现象。垂直速度场呈上升运动及高层辐散、低层辐合的物理量场配置对春季沙尘暴预报有较好的指示意义。  相似文献   

11.
本文利用NCEP 1°×1°逐6小时再分析资料和实况观测资料,运用天气分析和物理量诊断的方法,对四川省两次冬季区域性寒潮天气过程进行了对比分析,结果表明:(1)两次过程均属于中亚横槽型寒潮(N型),前期欧亚中高纬度地区环流径向度加大,乌拉尔山阻高强烈发展,后期横槽转竖东移引导冷空气南下,南下冷空气与南支槽前西南气流交汇入侵四川盆地,造成寒潮过程;(2)过程发生前,盆地大部地区基础温度较历史同期偏高,利于气温进一步下降;(3)西南急流能够将水汽不断向盆地内输送,连续的降水对气温下降起到了加强作用,是造成强降温的原因之一;(4)850hPa强冷平流是寒潮过程的关键因素,冷平流的移动路径和强度中心与过程降温地区有很好的对应。   相似文献   

12.
对2016年2月下旬大渡河流域的一次大到暴雪天气过程进行分析,通过天气环流特征分析和环境气象参数提炼,指出西路强冷空气爆发是大渡河流域上游大雪至暴雪的先导信号,这种信号可提前2~3 d。大雪的产生除了冷空气条件,也要有暖空气配合,对大渡河流域而言,最主要的暖湿空气来源有两条路径,一条是中层南支槽前暖湿气流北上在流域上游与冷空气相遇,形成高原切变线,是导致流域上游大到暴雪的主要中层天气系统。另一支暖湿气流沿横断山以东从低层进入四川盆地西北部地区,为流域降雪提供充足水汽条件。冷空气爆发后的适宜温度场,利于水汽升华变成雪花的过程。此次过程中,流域降大雪的温度条件可归纳为:700 hPa上气温不高于?5℃,500 hPa上气温不高于?9°C,地表温度低于0°C。在湿度指标上,环境大气相对湿度在70%以上,且空气中的水汽含量达到4 g kg?1以上。  相似文献   

13.
2005年3月云南倒春寒天气的成因分析   总被引:2,自引:0,他引:2  
周国莲  普贵明  李磊  高敏琪 《气象》2006,32(12):82-87
利用2005年3月3—6日的MICAPS常规资料,对天气形势和物理量场进行了详细分析,结果表明:在这次强倒春寒天气过程中,由于孟加拉湾到中南半岛一直维持强的高压环流,高压中心在高、中、低层都达到相当的强度,致使冷空气由北向南侵入滇中后受南部高压脊阻挡未能南下,而是向西侵入滇西、滇西北。这次倒春寒天气过程虽然没有南支槽配合,但高原南侧的低槽为这次降雪降雨提供了充足的水汽;500hPa上的西北气流,为这次倒春寒带来了强的冷平流;700hPa维持在丽江、昆明、蒙自的切变线是雪雨天气持续的主要动力因子。这些工作为今后此类特殊的倒春寒天气的预报提供参考依据。  相似文献   

14.
遵义市冬末初春两次寒潮降雪天气过程对比分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用Micaps常规观测资料、NCEP/NCAR再分析资料、区域站加密观测资料,对遵义市2016年3月8—9日(过程Ⅰ)和2017年2月21—22日(过程Ⅱ)的两次寒潮降雪天气过程进行对比分析。结果表明:(1)500 h Pa横槽转竖和低槽东移是两次寒潮爆发的重要引导系统,过程Ⅰ属于横槽转竖型寒潮天气过程,过程Ⅱ寒潮属小槽发展型。(2)地面冷高压中心强度(冷源)及南下速度是预报寒潮的关键。(3)700 h Pa切变影响与降雪时段对应较好,在今后降雪预报中应作为重要影响系统加以关注。(4)湿层深厚,整层水汽含量高为降雪的显著特征。(5)有无融化层和融化层厚薄应作为降雪预报温度条件的关注重点。  相似文献   

15.
利用常规气象观测资料和Micaps提供的相关资料,对2009年9月19—20日在河套地区发生的寒潮天气的环流形势及物理量进行分析。分析表明:在寒潮爆发前期,500hPa系统,蒙古西部的冷中心强度≥-32℃,且温度场滞后于高度场,为冷空气爆发南下提供了最基本条件;700hPa河套地区及上游≥16m.s-1的西北风急流基本形成,等温线与等高线交角≥45°且10个纬距内有4条及以上等温线的密集区;850hPa河套地区有≥16℃的暖中心,高空槽前后的西北风速≥18 m.s-1,温度线与高度线的夹角>45°;地面蒙古气旋的暖性性质为寒潮爆发的前期提供了有利的热力条件,地面冷锋后部冷高压轴线接近南北向,且冷高压中心强度≥1040hPa,3h变压≥3hPa。  相似文献   

16.
2020年1月5日07时至6日04时(北京时,下同)华北中部出现一次回流暴雪天气,过程最大降雪量15.5 mm。文中应用ERA5再分析和多种高分辨率观测资料分析了此次暴雪的大尺度天气背景和本地动、热力状况,探讨了暴雪落区、强度演变和降雪微物理特征及成因。结果表明,受河套地区地面倒槽和东北平原高压影响,900 hPa以下东北气流(被称为“回流”)自东北平原经渤海抵达华北平原,早于降雪7 h开始影响华北中部,受太行山阻挡在华北平原形成浅薄的近地面中尺度辐合线,对应暴雪落区;暴雪落区位于500 hPa高空槽前、700 hPa南北走向切变线东侧,850 hPa受西南低涡外围东南气流影响。降雪前1 h石家庄市观测到800 m以下转为东北风,1 km以下气温迅速下降至?5—?1℃,形成“冷垫”;暴雪区上空700 hPa附近低空急流较降雪早2 h出现,随后急流变厚、向下伸展至2 km高度,其下部暖湿空气沿“冷垫”爬升触发降雪,急流风速增至极值(19 m/s)和急流指数达峰值(约8)与大于1 mm/h强降雪时段重合,此时700 hPa上下为上升运动和水汽输送的大值中心。本次降雪粒子直径多为0.35—0.55 mm,降雪强度与粒子数浓度呈线性正相关;降雪云层位于1.3—5.5 km高度,大致以3 km (约?10℃)为分界线,下层为冰雪混合层,上层为冰雪层,冰雪层相对湿度与地面雪花粒子浓度及降雪强度呈正相关。基于雨滴谱仪探测资料反演的地面反射率因子与降雪强度拟合关系为Z=149.85R1.14。   相似文献   

17.
This paper studies a heavy snowfall in Beijing that took place on 1 November 2009. The date of the snowfall was about one month earlier than the average. The National Centers for Environmental Prediction (NCEP) reanalysis data, conventional data, and Automatic Weather Station (AWS) data are utilized to explore the reasons for the snowfall and the influencing systems. The main conclusions are as follows: (1) It is revealed from the average geopotential height and average temperature fields at 500 hPa that the large scale circulation in November 2009 was favorable to snowfall. The cold-dry air from West Siberia and the warm-moist air from the Bay of Bengal converged in North China. In addition, it was found from the average moisture flux field at 700 hPa that the main water vapor source was in the Bay of Bengal. (2) Not only the "return current", as usually accepted, but also the inverted trough on the current had an important contribution to the snowfall. The inverted trough could produce the obvious upward motion that is an important environmental condition of snowfalls. (3) More attention should be paid to mesoscale systems such as mesolows during the cold season because of their importance, though they do not occur as frequently as in the warm season. It should be pointed out that AWS data are very useful in mesoscale system analysis during both warm and cold seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号