首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
2020年5月22日珠江三角洲地区出现了一次极端强降水天气,最大滑动小时雨量201.8 mm,3 h雨量达到351 mm。为探讨此次极端强降水的关键预报因子及可预报性,对热带中尺度集合预报系统(CMA-TRAMS(EPS))降水预报产品进行检验评估和敏感性分析,结果表明:与欧洲中期数值预报中心集合预报系统(ECMWF-EPS)相比,CMA-TRAMS(EPS)的好成员对本次过程降水强度及位置的预报结果与实况更接近,但对极端性预报仍有欠缺。好成员的预报能力来自于对低涡和(超)低空急流的演变特征以及两者强度和位置耦合的有效预测。好成员组预报珠江三角洲东部(超)低空急流南风分量较强,有利于低涡缓慢移动和气旋性辐合增强,致使降水持续时间长、效率高。而低涡自身发展又反馈于急流强度变化,好成员组较准确地刻画了增强的低涡环流反馈导致急流小范围加速的耦合特征。其他成员组预报的低涡和(超)低空急流的耦合位置偏东、偏南,辐合强度偏弱,导致降水强度或落区出现偏差。此外,强降水致使冷池形成,并增强激烈的冷、暖气团对峙(水平温度梯度达0.23—0.76℃/km),有利于中尺度辐合线维持,加强对流后向传播并产生极端降水量。但CMA-TRAMS(EPS)两组成员在预报中尺度系统的组织性和传播特征方面均存在明显不足,限制了集合预报系统对极端降水的预报能力。   相似文献   

2.
利用常规高空探测资料、FNL 1°×1°再分析资料和地面加密区域自动气象站资料,分析了四川盆地2013—2018年有低空急流参与的区域性暴雨过程,从中选出了3次典型个例,分别分析了低空急流在3次代表性暴雨过程中的作用。结果表明:(1)东高西低型和低槽东移型是最常出现的500 hPa环流形势,副热带高压、西南低涡、南海台风(热带低压)是最常见的影响系统。(2)低空急流输送暖湿空气至四川盆地,使降水区内整层水汽含量和不稳定能量显著增强;暴雨区通常对应着低层的水汽通量辐合中心和一个密集的能量锋区。(3)低空急流出口区的左侧为强辐合中心,通过动力作用形成稳定的上升气流支和正涡度柱,产生强降水;整层的正涡度柱对应短时强降水,达到对流层中层的正涡度柱对应持续性降水,当正涡度柱加强时,降水明显增强。(4)低空急流风速增强或急流下边界降低预示着急流影响地区极有可能产生强降水。  相似文献   

3.
2021年7月16—17日,在大尺度鞍型背景场中长江中下游地区生成了准静止的β中尺度低涡系统,造成苏皖地区出现局地特大暴雨及雷暴大风天气。欧洲中心(EC)控制预报对低涡位置的描述较实况明显偏北,由此在降水预报中也呈现出较大偏差,给预报决策带来较大误导。采用EC控制和集合预报产品,并基于“预报挑战度(MFC)”和“可预报性演变指数(PHDX)”等客观方法对低涡及降水预报不确定性进行分析,并在此基础上探讨模式偏差成因,得到以下结论:(1)对流层低层低涡东侧西南气流和东南气流的辐合以及低空急流的水平涡度输送是低涡发展的主要动力因素,而低涡东侧和南侧降水的潜热释放则构成低涡发展的热力因素;(2)EC控制预报不同起报时次均出现低涡位置偏北及雨带预报偏北现象,其集合预报产品离散度无法覆盖实况降水,揭示了此次过程的低可预报性,MFC和PHDX则能够客观指示此次过程低可预报性;(3)前期模式对低涡南侧西南气流南风分量预报偏大及对东侧辐合区刻画偏北造成前期东段降水偏北,而后在潜热释放、低空急流与低涡正反馈机制影响下,偏北的降水区造成低涡进一步预报偏北,最终导致整个时段预报较观测呈现巨大差异。   相似文献   

4.
对12h24mm以上强降水带的预报,模式输出的降水资料是预报的重要依据,但有时偏差较大。依据中尺度分析技术,利用常规资料、EC细网格和T639模式12h预报场对2013年夏季发生在北疆北部的2次区域强降水过程中12h最强降水时段的环境场进行中尺度分析。结果表明,中亚低槽北上强降水落区位于500和700hPa中尺度气旋的第一、四象限及对流层低层冷槽的右侧,850hPa切变线附近,地面中尺度高压前部、边界线和切变线附近及干线西侧的重合区域。西西伯利亚低涡型暴雨位于中尺度短波槽前、高空西南急流出口区左侧辐散区,700和850hPa切变线西侧及干线西南部,850hPa偏西、偏东及东南3股气流汇合区,地面干线的西部、辐合线东部及切变线附近的重叠区域。中亚低槽北上暴雨天气为非典型暴雨易漏报。用模式12h预报场制作高空综合图,可提高预报时效,EC细网格优于T639模式。  相似文献   

5.
GRAPES-REPS西南低涡预报检验评估   总被引:5,自引:4,他引:1  
王静  陈静  钟有亮  张进  李晓莉 《气象》2017,43(4):385-401
利用2015年6—8月GR APES-REPS(Global/RegionalAssimilation and Prediction System-Regional Ensemble·Prediction System)区域集合预报资料,并设计西南低涡格点资料客观识别方法对西南低涡中心位置进行定位,首先评估GRAPES控制预报对西南低涡的预报准确性,之后挑选出四次生命史较长的西南低涡过程,分析评估GRAPES-REPS对西南低涡发生、发展、移动及降水过程集合预报性能。结果表明:(1)GRAPES模式对西南低涡预报的命中率较高,空报率略大于漏报率。(2)GRAPES-REPS对西南低涡发生和发展的预报效果较好,绝大部分集合预报成员能预报西南低涡发生和发展过程,但对西南低涡发生时间预报总体偏早。(3)GRAPES-REPS对西南低涡移动路径在24 h预报时效内比较合理,且集合预报平均明显优于控制预报,24 h之后东移型西南低涡移动路径明显偏北。(4)GRAPES-REPS对西南低涡强度预报总体偏强,表现为中心正涡度值偏大,位势高度值偏低。(5)24 h预报时效内,西南低涡触发的小雨到大雨量级的降水概率评分均有较好表现,且落区与实况接近,而暴雨落区个别略有偏北,但基本吻合。24 h之后,由于东移型西南低涡移动路径偏北导致模式预报降水落区偏北。可见,模式对西南低涡强降水有一定预报能力,因此,提高GRAPES-REPS中尺度集合预报能力,将有助于改进西南低涡强降水预报。  相似文献   

6.
周成  杨学斌  吕伟绮  王宁 《山东气象》2019,39(2):143-150
选取2006—2013年山东8次典型短时强降水(降水强度>20 mm·h-1)个例,并根据降水的天气尺度影响系统分为4种类型,利用山东区域ADTD型闪电定位仪资料,统计各类短时强降水与地闪相关性;结合地闪频数、密度分析地闪与短时强降水的雨强、出现时间、空间分布等特征的相关性。结果表明:1)各类强降水与不同范围地闪的相关性不同,与固定范围内地闪的时间、空间分布特征不同;其中负地闪占绝大多数,正闪比例小,负闪占比越大降水越强;站点周边30 km范围内地闪频数与降水相关性较好,低槽冷锋型强降水与地闪频数相关性最好,其次是低涡切变线型,黄淮气旋型短时强降水与地闪频数相关性差,热带气旋型强降水则与正闪相关性更好。2)地闪频数只对单次过程降水量变化有所指示,不能直接用来判别短时强降水,而地闪频数峰值对于短时强降水预报有一定指示意义;其中后倾型低槽冷锋、西北涡、西南涡型短时强降水地闪频数峰值对于预报短时强降水指示意义较强,冷切变和暖切变型指示意义较小,前倾型低槽冷锋、黄淮气旋、热带气旋型无明显指示意义。3)高地闪密度与短时强降水落区对应较好,但短时强降水并不一定会出现在高地闪密度中心区域;大部分短时强降水极值站高地闪密度中心对应;对于后倾型低槽冷锋、暖切变、西南涡型短时强降水,5次·(10 km)-2·h-1可作为预报参考阈值。  相似文献   

7.
利用新疆克州地区近45a(1960--2004年)冬春季逐日降水资料,统计分析了克州地区强降雪的时空分布特征;利用NCEP逐日再分析资料对产生强降雪的天气形势、环流特征、物理量场进行归纳总结,将500hPa环流分为中亚低压(涡)槽类、喀布尔低涡(槽)、巴湖低压槽和里咸海低压(涡)槽类,认为高空300hPa的西风急流和低空850hPa偏东急流的密切配合是强降雪天气发生的主要条件。在研究基础上建立克州地区强降雪天气过程预报的概念模型。  相似文献   

8.
利用常规天气、地面危险天气报、自动站加密、NCEP/NCAR再分析资料等,对2011年7月12—20日持续9 d的华北冷涡过程阶段性特征进行分析。结果表明:冷涡过程降水主要分布在内蒙古东北部、华北和东北南部,发展阶段对流性强,多雷暴大风和冰雹,水汽来源于西南和东南气流,850 hPa上有强暖温度脊,高空急流较完整;减弱阶段以短时强降水为主,水汽来源于偏东气流;两阶段700 hPa以下为斜压,上升运动区主要位于东侧;发展阶段500 hPa为干区,南侧存在干空气侵入和θe梯度;减弱阶段整层相对湿度较大,θe锋区及不稳定度减弱。中层冷平流及中高层正涡度平流随高度增强是冷涡发展的主要因子,冷涡减弱是由低层冷平流进入冷涡中心、中层冷平流及中高层正涡度平流减弱共同影响所致。  相似文献   

9.
2019年第9号台风“利奇马”在8月10日登陆后引发了远距离大范围的暴雨,本文利用ECMWF(EC)和GRAPES全球集合预报模式等资料对暴雨短期预报的误差及原因进行了分析。此次台风远距离暴雨主要集中在8月10日夜间的山东中部地区,EC集合预报对该区域的降水量预报效果总体优于GRAPES集合预报。集合敏感性分析可以识别出和预报变量高相关(敏感)的天气系统,结果表明山东区域平均降水量对同期500 hPa副高、台风西北侧海平面气压和山东北部低层温度较为敏感,而对流层高层的高度及经向风存在更大范围的敏感区。根据暴雨预报TS评分选取EC集合预报成员作为优势组和劣势组,结果表明优势组预报成员表现为山东上空300 hPa低槽前倾,北侧高空偏南急流更强,同时配合低层台风外围偏东风急流,形成高层辐散、低层辐合的有利条件。另外,优势组预报的中纬度低层冷空气和斜压锋区更强,导致优势组在山东中部预报出暴雨,更加接近于实况。  相似文献   

10.
河西干旱区短时强降水过程的中尺度分析   总被引:3,自引:0,他引:3  
运用中尺度天气分析技术,对河西西部干旱区3次短时强降水过程从高空、地面的影响系统、水汽条件、抬升条件、不稳定条件、高低层风场配置等方面进行了对比分析,找出了3次过程的相似点与不同之处,结果表明:500 hPa新疆有低压槽东移,低槽前部甘肃河东到张掖为高压脊或者歪脖子高压,青海高原有低涡或者切变线,相应的低层也为低槽、切变线或者低涡,地面有冷锋、辐合线配合的环流形势是河西西部短时强降水产生的关键,高空急流(200 hPa)或者高空显著流线入口区右侧、地面露点温度Td>10℃的高湿区、低层绝对湿度比湿>6 g/kg,中层500 hPa处在显著湿区、700 hPa假相当位温高能舌、K指数>30℃,CAPE值也明显增大为产生短时强降水提供了有利条件,最后建立了河西西部干旱区短时强降水中尺度天气分析概念模型。  相似文献   

11.
2015年8月23—24日期间台风天鹅引发华东中部沿海地区出现暴雨或大暴雨天气。基于欧洲中期天气预报中心的集合预报分析导致此次远距离暴雨预报不确定的关键原因,并利用集合敏感性分析方法研究影响此次暴雨过程的主要天气系统的敏感区域,此外对暴雨发生发展的热动力机制展开探讨,主要结论包括:集合预报对此次台风天鹅引起的远距离暴雨的可预报性明显偏低,仅在暴雨发生前24 h才做出较大调整。在不同起报时次下,当台风路径的系统性偏差最小时,台风降水集合预报也最接近实况,但是进一步的分析表明,台风路径误差与降水量级之间的对应关系并不确定。不同雨量成员组间中低层环流场的对比分析表明:高空槽的预报差异是集合预报不确定的主要原因,高空槽东移加深有利于增加暴雨区的斜压不稳定,也有利于增强对流层低层的水汽输送急流带。500 hPa高度场的敏感性分析表明无论是初始场还是预报场,暴雨区平均降雨量均与高空槽的东移和加深显著相关,且随着预报时次的临近,显著相关区域向低槽下游明显扩大。此外还发现高空槽的东移有利于增强(减弱)暴雨区左(右)侧低层冷空气的强度,使得台风右侧更多暖湿气流向暴雨区输送。  相似文献   

12.
利用常规气象观测资料、自动站观测资料和探空资料等,对所选取的2004—2013年共78例降水过程进行分析,将中部区域春秋季降水过程分为3个类型:低槽/切变线冷锋型、低涡(西南涡/西北涡)气旋型、低槽/切变线冷高压型。统计结果表明,中部区域春秋季降水出现概率最多的类型依次为切变线冷锋型、低槽冷锋型和西南涡类型,各天气类型的雨区移动方向均以自西向东为主,低层700 h Pa和850 h Pa多存在西南或偏南急流,水汽主要来自于孟加拉湾。分析中部区域3种主要降水类型特征及其增雨潜力区位置发现:1)低槽冷锋类型降水一般出现在500 h Pa和700 h Pa低槽前部、地面冷锋后部,多为连续性降水;其增雨潜力区主要位于500 h Pa低槽前部、700h Pa槽前和西南急流出口区的左侧,以及地面冷锋后部或锋线附近区域。2)切变线冷锋类型降水多出现在地面冷锋后部、低层切变线两侧附近;其增雨潜力区主要位于700 h Pa和850 h Pa两切变线之间且较靠近700 h Pa切变线一侧、急流出口左侧的带状区域。3)西南涡波动类型降水一般出现在低涡中心及700 h Pa暖式切变线两侧附近,降水持续时间较长;其增雨潜力区主要位于700 h Pa和850 h Pa低涡中心附近及暖式切变线北侧区域。  相似文献   

13.
从环流形势、弱冷空气影响、大气稳定度、水汽收支等方面分析了2017年6月上旬江苏南部的一次极端暴雨过程,并与该区域同期其他暴雨事件进行了对比。结果表明,暴雨区位于加强的200 hPa西风急流入口区的右侧,偏强的副热带高压西北侧的西南气流与东北冷涡西南侧的西北气流交汇及850 hPa异常的风场切变是造成本次强降水过程的重要条件,中层弱的干冷空气入侵对降水有增幅作用,32.5°N附近江苏西部冷平流和冷锋锋生强度明显强于东部,造成江苏南部西侧降水强于东侧。暴雨区存在明显的条件性对称不稳定,水汽水平辐合强度、垂直输送强度、总的水汽辐合强度和垂直上升运动及潜热加热强度为其他年份同期暴雨过程的3倍,极端性明显。此外,本次过程中气旋的移动路径易导致江苏南部地区出现强降水。  相似文献   

14.
一次西南低涡东移引发长江中下游暴雨的诊断研究   总被引:1,自引:0,他引:1  
刘晓波  储海 《气象》2015,41(7):825-832
利用常规观测资料和NECP再分析资料,对2013年6月6—7日西南低涡东移加强发展造成长江中下游大暴雨过程进行了诊断分析,重点探讨了西南低涡东移和发展维持的物理机制以及最强降水的变化特征。结果表明,沿着700 hPa高空切变线东移的西南低涡是造成此次长江中下游地区暴雨的直接影响系统,西南低涡沿着700 hPa切变线东移发展,深厚阶段正涡度柱伸展到400 hPa高度,自下而上呈近垂直结构。西南低涡附近低层辐合与高层辐散的大尺度环境条件、西南低涡与西南低空急流耦合发展动力结构、低空暖平流和高空槽前正涡度平流输送等条件是导致西南低涡东移到长江中下游后加强发展的主要因子。与西南低涡相伴随的强降雨区主要位于低涡南部3个纬距以内,该处的西南季风和副高西南侧东南气流两支水汽输送的汇合为暴雨发生提供了充沛的水汽和对流不稳定能量,而对流层中低层携带的冷空气侵入低层低涡的后部,不仅加强了低涡的斜压性,也促进了上冷下暖不稳定层结的产生和发展,为强降水的发生提供了不稳定对流触发条件。  相似文献   

15.
2010年秋冬季西南地区严重干旱与南支槽关系分析   总被引:6,自引:0,他引:6  
利用1951~2009年西南地区24个站点逐月降水资料以及NCEP/NCAR再分析资料,分析了2009/2010年冬季我国西南地区严重干旱的演变特征,并使用SVD、小波分析和合成分析揭示了南支槽与我国西南地区冬季严重干旱的关系。结果表明:2009/2010年西南地区冬季严重干旱从秋季10月份云南省开始出现大范围干旱为征兆,11~2月逐步发展到西南三省,3月减弱。从秋季10月到次年2月的降水持续偏少,加重了此次旱情。2009/2010年冬季西南地区严重干旱的开始、发展和减弱与同期500hPa南支槽活动及整层水汽输送有着密切的关系。我国西南地区11~3月降水和前期11月南支槽指数在10~12年周期变化上存在显著的反相关系,前期11月南支槽区负距平,南支槽指数偏弱,南支槽加深,水汽输送充足,西南地区降水偏多;反之,前期11月南支槽区正距平,南支槽指数偏强,南支槽变浅,水汽条件不足,西南地区降水偏少。SVD分析表明,高度场第一模态同性相关场的关键区在青藏高原南侧孟加拉湾地区,反映了南支槽强弱变化信息,第一模态的这对空间分布型表明18~20°N,84~92°E范围11~3月500hPa高度场异常偏低时,同期我国西南地区降水偏多;高度场第二模态同性相关场的关键区在22°N以南区域,反映了西风强弱变化信息。第二模态的这对空间分布性表明70~110°E之间22°N以南区域11~3月500hPa高度场异常偏低时,同期我国西南地区降水偏少。11~3月关键区500hPa高度场与我国西南地区同期降水在时空场上都有着很好的同步关系,并且前期500hPa高度场是我国西南地区11~3月旱涝情况的一种预测信号。   相似文献   

16.
2007年7月12-15日河南省大暴雨天气诊断分析   总被引:4,自引:2,他引:2  
利用常规观测资料和NCEP再分析资料,对2007年7月12-15日河南省黄淮之间的大暴雨过程进行了诊断分析,结果发现:这次暴雨是一次较为典型的西南低涡东北移影响河南省所造成的暴雨,500 hPa西风槽东移过程中,槽前携带的冷空气不断自西北方向侵入西南低涡中心,导致西南涡东移发展,移经河南省,在其移向的右前方和中心区产生了强降水;垂直上升运动区及流线辐合区与暴雨落区有较好的对应关系;这次暴雨水汽输送源地有两个,分别是孟加拉湾和东海海面;水汽辐合区与暴雨落区相对应;垂直螺旋度的演变对本次西南涡暴雨有较好预报指示意义。  相似文献   

17.
2010年1月鄂东一次暴雪过程中尺度分析   总被引:1,自引:0,他引:1  
利用常规观测资料及NCEP/GFS再分析资料,对2010年1月5—6日发生在湖北东部的暴雪过程进行中尺度分析。结果表明:500hPa北支槽后干冷空气配合南支槽前西南暖湿气流形成的冷暖交汇以及850hPa低涡北抬发展是产生暴雪的主要天气背景;200hPa高空急流、700hPa西南急流、925hPa东北气流、850hPa气流汇合区、700hPa及850hPa露点锋、锋生次级环流、风向随高度强烈顺转的垂直风切变以及地面中尺度辐合区的有利空间配置,对暴雪预报具有重要指示意义。此外,在上述研究的基础上对此次暴雪过程的三维物理模型进行了总结。  相似文献   

18.
利用常规气象观测资料和NCEP 1°×1°间隔6 h再分析资料,采用天气学诊断分析方法,对2012年4月23-24日河南省一次春季暴雨的形成机制进行分析,结果表明:高纬冷空气沿贝加尔湖低涡后部偏北气流南下,在河套西部形成深厚低槽,低槽携带冷空气东移,在河南境内与强盛的西南急流汇合,是本次暴雨过程的天气背景。冷空气的侵入有利于西南涡的加强,而南支槽前的正涡度平流促使西南低涡沿切变线向东北方向移出,使得切变线南侧西南低空急流加强,为暴雨的发生提供了有利的动力与水汽条件。短时强降水发生前,低层能量场出现明显辐合,当低层能量场转为辐散时,能量释放,有利于短时强降水的出现。高层辐散、低空辐合的动力条件配置,使得大范围垂直上升运动加强,特别是高层散度场的下伸,利于降水释放潜热,增加大气的不稳定,进而利于强降水的发生。850 h Pa垂直螺旋度中心大值区域能很好地反映切变线、急流等与低涡相联系的天气系统,其中心强度的迅速变化能较好地指示降水的落区和强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号