首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Towards Closing the Surface Energy Budget of a Mid-latitude Grassland   总被引:4,自引:1,他引:3  
Observations for May and August, 2005, from a long-term grassland meteorological station situated in central Netherlands were used to evaluate the closure of the surface energy budget. We compute all possible enthalpy changes, such as the grass cover heat storage, dew water heat storage, air mass heat storage and the photosynthesis energy flux, over an averaging time interval. In addition, the soil heat flux was estimated using a harmonic analysis technique to obtain a more accurate assessment of the surface soil heat flux. By doing so, a closure of 96% was obtained. The harmonic analysis technique appears to improve closure by 9%, the photosynthesis for 3% and the rest of the storage terms for a 3% improvement of the energy budget closure. For calm nights (friction velocity u * < 0.1 m s−1) when the eddy covariance technique is unreliable for measurement of the vertical turbulent fluxes, the inclusion of a scheme that calculates dew fluxes improves the energy budget closure significantly.  相似文献   

2.
Soil heat flux is important for surface energy balance (SEB), and inaccurate estimation of soil heat flux often leads to surface energy imbalance. In this paper, by using observations of surface radiation fluxes and soil temperature gradients at a semi-arid grassland in Xilingguole, Inner Mongolia, China from June to September 2008, the characters of the SEB for the semi-arid grassland were analyzed. Firstly, monthly averaged diurnal variations of SEB components were revealed. A 30-min forward phase displacement of soil heat flux (G) observed by a fluxplate at the depth of 5-cm below the soil surface was conducted and its effect on the SEB was studied. Secondly, the surface soil heat flux (G s) was computed by using harmonic analysis and the effect of the soil heat storage between the surface and the fluxplate on the SEB was examined. The results show that with the 30-min forward phase displacement of observed G, the slope of the ordinary linear regression (OLR) of turbulent fluxes (H+LE) against available energy (R n-G) increased from 0.835 to 0.842, i.e., the closure ratio of SEB increased by 0.7%, yet energy imclosure of 15.8% still existed in the SEB. When G s, instead of G was used in the SEB equation, the slope of corresponding OLR of (H+LE) against (R n-G s) reached 0.979, thereby the imclosure ratio of SEB was reduced to only 2.1%.  相似文献   

3.
Abstract

Half‐hourly measurements of soil surface heat flux density (G0 ), solar irradiance (S), and the surface energy balance components were made at Agassiz, b.c., in the spring and early summer of 1978 at two adjacent bare‐soil sites, one of which was culti‐packed while the other was disc‐harrowed. G0 was calculated using the null‐alignment procedure from half‐hourly measurements of soil temperature at 30 depths down to 1 m, and volumetric soil heat capacity calculated from measurements of bulk density, organic matter fraction, and moisture content. The latent and sensible heat flux densities were measured using the energy balance/Bowen ratio technique.

It was found that both the daily averages and diurnal variations of Go at each site were not affected as the soil surface dried, despite reductions in evaporation rate of as much as 50% at the culti‐packed site and 75% at the disc‐harrowed site on the clear dry‐soil days. Diurnal variations of G0 at the disc‐harrowed site were about 25% less than at the culti‐packed site, although daily averages were similar at both sites. Daily and daytime averages of G0 at each site were linear functions of S alone, or functions of net radiation and some measure of near‐surface soil water content. Night‐time averages of G0 at each site were linear functions of a cloudiness ratio equal to the fraction received of the clear‐day S.  相似文献   

4.
The pre-melt energy budget of a snowpack on landfast first-year sea ice at a remote site in the Canadian Arctic Archipelago was analyzed. Over a 19-day period, the total heat conducted into the snowpack at the snow–sea-ice interface was the largest single energy transfer to the snowpack, while each of the turbulent heat fluxes removed comparable amounts of energy. The total energy transferred from the snowpack (∑Q?≈??7027?kJ?m?2) should have reduced its temperature; however, the opposite occurred. The snowpack’s temperature at both the 7 and 13?cm depths increased over the pre-melt period. The total change in internal energy and latent heat of the snowpack (ΔUsnowpack), derived from 15-minute changes in the snowpack’s temperature over the pre-melt period, was approximately 672?kJ?m?2. Closure of the energy budget was not achieved for either the daily or the total pre-melt period. The terms of the energy budget were determined independently; thus, the failure to close the energy budget was the result of the accumulation of errors associated with all the terms. However, for snow on first-year sea ice, the parameterization of the salinity and temperature dependence of the “specific heat” of the basal layer of the snowpack was likely the primary source of error. The snowpack plays a central role in the transfer of energy across the ocean–sea-ice–atmosphere interface, but an adequate method for modelling the evolution of snow on Arctic sea ice including the energy budget, which determines the warming rate and subsequent melt rate of the snow, has yet to be developed.  相似文献   

5.
活动层水热状况与地-气系统间能水交换直接影响着寒区生态环境、水文过程以及多年冻土的稳定性。利用唐古拉站2007年实测资料和SHAW模型,对研究点活动层土壤剖面温湿度进行了模拟。土壤温度方面,模型的纳什效率系数NSE≥0.93;水分方面,纳什效率系数的平均值为0.69,说明SHAW模型可用于多年冻土区活动层内水热动态变化的模拟研究。基于模型的输出结果,对唐古拉站活动层土壤冻融过程中的水分动态、地表能量收支的变化特征进行了分析讨论。结果表明:(1)活动层冻融过程中,土壤水分的冻结和融化响应时间随土壤深度的增加而逐渐滞后,水分迁移通量随土壤深度的增加逐渐减小;(2)地表能量平衡收支在季风活动引起的降水与活动层的冻融循环共同影响下,表现出明显的季节性变化特征。同时,通过改变SHAW模型植被输入参数中的叶面积指数,分析了植被覆盖变化对多年冻土区土壤蒸散发的影响。结果表明:植被蒸腾量、土壤蒸发量与总的蒸散发量与植被的叶面积指数呈正相关关系,而浅层土壤含水率(20 cm)则表现为负相关,当叶面积指数在-100%(裸土)~100%变化时,总蒸散发量的变化幅度为-5%~13%。  相似文献   

6.
G J Boer 《Climate Dynamics》1993,8(5):225-239
The increase in the vigor of the hydrological cycle simulated in a 2 × CO2 experiment with the Canadian Climate Centre general circulation model is smaller than that obtained by other models which have similar increases in mean surface temperature. The surface energy budget, which encompasses also the moisture budget for the oceans, is analyzed. Changes in the net radiative input to and sensible heat flux from the surface act to warm it. This is balanced, at the new equilibrium, by a change in the latent heat flux which acts to cool it. Although this same general behavior is seen in other models, the increase in radiative input to the surface in the CCC GCM is smaller than in other models while the change in the sensible heat flux is of similar size. As a consequence, the latent heat flux required for balance is smaller. The comparatively small increase in the net radiative input at the surface occurs because of a decrease in the solar component. On average the decrease in solar input in the tropical region outweighs the higher latitude increase associated with the snow/ice albedo feedback. The notable tropical decrease in solar input occurs because the albedo of the clouds increase enough in this region to outweigh a small decrease in cloud amount. The increase in cloud albedo in the warmer and moister tropical atmosphere is a consequence of the parameterized cloud optical properties in the model which play an important role in the regulation of the surface energy and moisture budgets. The results demonstrate some of the consequences of the negative feedback mechanism associated with increasing cloud albedo in the model. They also suggest that the simulated change in the vigor of the hydrological cycle is not a simple function of the average increase in surface temperature but is a consequence of all of the processes in the model which control the available energy at the surface as a function of latitude.  相似文献   

7.
Summary Strong stable layers are a common occurrence during western Colorado's winter. Analysis of radiosonde observations indicate wintertime boundary layer heights are near 500 m. The terrain in this region consists of mountains that rise approximately 1500–2000 m above the ground to the east, providing an effective blocking barrier. An experiment is described to observe upwelling and downwelling, longwave and shortwave radiative fluxes at two sites in western Colorado during January and February 1992, for combinations of clear, cloudy, snow covered, and bare ground periods. Analysis of the observations and the surface energy budget for typical Bowen ratios provides a better understanding of the role of radiation in maintaining and destroying stable layers.During the day, the surface received a net gain of energy from radiation, while at night there was a net loss. Over snow, the 24-hour net radiative flux was small and either positive or negative. Over bare soil, the 24-hour net radiative flux was positive but still small. There is little difference in the net radiative flux between clear and cloudy days; the reduction of the incident solar flux by clouds is nearly compensated by the hindering of the longwave cooling. The cumulative effects of the 24-hour net radiative flux were negative over snow early in the experiment. The 24-hour values shifted to near zero as the snow albedo decreased and were positive for bare ground.If the daytime net radiative flux is partitioned into sensible and latent heat flux using typical Bowen ratios, the daytime sensible heat available for destroying boundary layers is small for the low solar angles of the winter season. With a Bowen ratio of 0.5, the daytime sensible heat flux available is only 0.3 to 1.2 MJ m–2 over a snow surface and 1.4 to 2.3 MJ m–2 over soil. These heat fluxes will not build a deep enough boundary layer to break a typical wintertime inversion. The 24-hour sensible heat flux was negative at both sites for the entire experiment with this Bowen ratio.The radiation observations and the use of typical Bowen ratios lead to the conclusion that the net radiation will sustain or strengthen a stable atmosphere in the winter season in western Colorado. Analysis of the radiosonde observations confirm this result as the boundary layer depths were less than 500 m early in the experiment and grew to only 700 m later in the experiment.With 12 Figures  相似文献   

8.
湿地是由陆地和水体形成的自然综合体,具有重要的生态、水文和生物地球化学功能,黄河源高寒湿地作为黄河重要的水源涵养区,对其下垫面水热交换特征及关键影响参数的研究具有非常重要的意义。本文利用中国科学院西北生态环境资源研究院麻多黄河源气候与环境变化观测站2014年6~8月观测资料,分析了黄河源区高寒湿地-大气间暖季水热交换特征,并利用公用陆面模式(Community Land Model,简称CLM)模拟了热通量变化,提出针对高寒湿地的粗糙度优化方案。主要结果如下:(1)暖季向上、向下短波与净辐射的平均日变化规律一致,向上、向下长波平均日变化平缓,地表温度升高相对于向下短波具有滞后性,潜热通量始终为正值并大于感热通量;(2)温度变化显著层结为20 cm以上土壤浅层,存在明显的日循环规律,土壤中热量09:00(北京时,下同)下传至5 cm深度,温度升高,11:00至10 cm深度,13:00至20 cm深度,18:00后开始上传,温度降低,40 cm及以下深度受此影响较小,热量在土壤中整体由浅层向深层输送;(3)土壤湿度平均日变化小,5 cm深度为土壤湿度最小层,10 cm深度为最大层;(4)麻多高寒湿地动力学粗糙度Z0m在暖季变化稳定,可作为常数,Z0m=0.0143 m;(5)提出更加适合高寒湿地下垫面暖季附加阻尼kB-1参数化方案,使得热通量模拟效果较CLM原始方案有所提高。以上结果对于研究湿地下垫面陆面过程具有重要意义。  相似文献   

9.
The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.  相似文献   

10.
Estimation of ground heat flux from soil temperature over a bare soil   总被引:1,自引:0,他引:1  
Ground soil heat flux, G 0, is a difficult-to-measure but important component of the surface energy budget. Over the past years, many methods were proposed to estimate G 0; however, the application of these methods was seldom validated and assessed under different weather conditions. In this study, three popular models (force-restore, conduction-convection, and harmonic) and one widely used method (plate calorimetric), which had well performance in publications, were investigated using field data to estimate daily G 0 on clear, cloudy, and rainy days, while the gradient calorimetric method was regarded as the reference for assessing the accuracy. The results showed that harmonic model was well reproducing the G 0 curve for clear days, but it yielded large errors on cloudy and rainy days. The force-restore model worked well only under rainfall condition, but it was poor to estimate G 0 under rain-free conditions. On the contrary, the conduction-convection model was acceptable to determine G 0 under rain-free conditions, but it generated large errors on rainfall days. More importantly, the plate calorimetric method was the best to estimate G 0 under different weather conditions compared with the three models, but the performance of this method is affected by the placement depth of the heat flux plate. As a result, the heat flux plate was recommended to be buried as close as possible to the surface under clear condition. But under cloudy and rainy conditions, the plate placed at depth of around 0.075 m yielded G 0 well. Overall, the findings of this paper provide guidelines to acquire more accurate estimation of G 0 under different weather conditions, which could improve the surface energy balance in field.  相似文献   

11.
利用苏州地区2011年12月20日—2012年8月13日的湍流观测资料对不同季节、高温、台风强天气过程下的湍流特征进行分析。结果表明:城市地区不同季节动量通量、感热通量、潜热通量日变化明显,各通量的夏季平均值、最大值均高于冬春季,夏季感热通量日最大值为160.2 W·m-2,感热在城市地表能量平衡中的作用大于潜热,各季节潜热通量平均值仅为感热通量的40%~45%。降水量和植被覆盖度影响地表能量平衡,尤其影响地表热量在感热和潜热之间的分配。在高温天气过程中,感热通量增加明显,其峰值约是夏季平均的1.93倍。由于水汽较少,潜热通量明显减少,约为夏季日平均值的60%。速度三分量谱中u谱与w谱在低频区存在两个峰值,说明在城市复杂下垫面里,湍流激发机制中存在低频过程的影响。在台风天气过程中,动量通量大且变化快,感热输送弱,潜热输送波动大。速度谱w基本不符合"-5/3"次律,惯性子区最小且向高频移动,这和台风内部的复杂上升下沉气流有关。  相似文献   

12.
Abstract

This study reports on testing of the peatland version of the Canadian Land Surface Scheme (CLASS) for simulating the energy balance of subarctic open woodland terrain. Model results are compared against several years of measured data from a site near Churchill, Manitoba. In contrast to most forest environments, the floor of the open forest plays a large role in total ecosystem energy exchange. This behaviour presents a significant challenge for land surface models like CLASS and their simplified treatment of vegetation canopies.

Simulations of summer energy balance for seven years encompassing a wide range of meteorological conditions produced consistent results. Root mean square errors for sensible and latent heat fluxes fell between 11 and 28 W m?2. CLASS consistently underestimated slightly the daily latent heat flux and overestimated the sensible heat flux, average mean bias errors being ‐7.6 and 9.1 W m?2, respectively. The soil heat flux was less well represented. In general, CLASS was able to capture the diurnal and seasonal behaviour of the measured fluxes under a range of conditions with reasonable accuracy.

In a full year simulation, CLASS reproduced the annual variations in energy balance with some discrepancies associated with snow accumulation and ablation periods. The model performance was sensitive to both snow density and specification of the surface cover. Recommendations for improving the model for subarctic woodlands and terrain types with similar features are discussed.  相似文献   

13.
土壤热异常对地表能量平衡影响初探   总被引:3,自引:1,他引:3  
郭维栋  孙菽芬 《气象学报》2002,60(6):706-714
将来自土壤深部的热通量引入off line的陆面过程模式 (NCAR—LSM ) ,通过长达 2a的数值试验对比分析了它对各层次土壤温度和地表能量平衡的影响。  在土壤底部引入 5W /m2 的热通量使底层土壤显著升温 ,但升温随着接近表层而迅速衰减。积分 3个月后 ,由地下进入地表的热流量增幅可达 1W/m2 以上 ,并持续增大到 5W /m2 ,地表最大升温约 0 .5K ,同时地表感热、蒸发潜热及长波辐射通量均有 1W /m2 左右的正异常 ;若将土壤热传导系数放大一个量级以加速热量交换 ,则地表升温提高到 1K以上 ,长波辐射增加 3W /m2 以上 ,超过了气溶胶全球平均的辐射效应。结果表明 :一定量值的土壤热异常对地表能量平衡和短期气候变化 (10 -1~ 10 1a)有着不可忽略的影响。同时 ,深入的资料分析、完善的陆面过程模式以及它与大气模式的耦合试验也是亟待进行的相关工作。  相似文献   

14.
青藏高原湿地土壤冻结、融化期间的陆面过程特征   总被引:4,自引:0,他引:4       下载免费PDF全文
利用青藏高原中部玉树隆宝湿地2015年7月-2016年7月的观测资料,分析了土壤冻结、融化前后土壤温、湿度和地表能量收支特征,结果表明:冻土持续时期为12月至次年4月,深层土壤的冻结较浅层土壤滞后,融化过程快于冻结过程,5-40 cm土壤全部冻结历时51 d,全部融化历时19 d。土壤体积含水量年变化幅度达0.6 m3/m3。冻结过程5-40 cm土壤体积含水量下降,融化过程5-10 cm土壤体积含水量升高。土壤冻结之后,感热通量白天的值升高,潜热通量白天的值降低,净辐射和土壤热通量均降低,土壤热通量日变化幅度增大。土壤融化之后,潜热通量、净辐射和土壤热通量白天的值升高。地表反照率、鲍恩比、土壤热导率和土壤热扩散率冻结后增大融化后减小,土壤热容量冻结后减小融化后增大。  相似文献   

15.
本文基于2007年和2008年生长季内蒙古羊草和大针茅草原湍流观测资料,分析了两种典型草原下垫面生长季的不同土壤水分条件下水汽和二氧化碳通量交换特征及其控制因子。主要结果如下:(1)在植被生长峰值期,日尺度上,干旱条件下土壤湿度是潜热通量的主要控制因子,而土壤水分条件较好时潜热通量主要受净辐射控制。(2)与大针茅草原相比,羊草草原叶面积指数较大,水分条件较好时,其潜热通量平均值更大,CO2吸收能力更强,吸收CO2更多;但在土壤水分胁迫出现时,羊草草原叶面的气孔闭合度急剧增加,大针茅草原的潜热通量、和CO2吸收反而更大,表现出更为耐旱的植被特性。(3)地表导度可以用来解释土壤水分条件对羊草和大针茅草原碳水通量的影响。  相似文献   

16.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

17.
土壤热异常影响地表能量平衡的个例分析和数值模拟   总被引:6,自引:0,他引:6  
The statistical relationship between soil thermal anomaly and short-term climate change is presented based on a typical case study. Furthermore, possible physical mechanisms behind the relationship are revealed through using an off-line land surface model with a reasonable soil thermal forcing at the bottom of the soil layer.In the first experiment, the given heat flux is 5 W m-2 at the bottom of the soil layer (in depth of 6.3 m)for 3 months, while only a positive ground temperature anomaly of 0.06℃ can be found compared to the control run. The anomaly, however, could reach 0.65℃ if the soil thermal conductivity was one order of magnitude larger. It could be even as large as 0.81℃ assuming the heat flux at bottom is 10 W m-2. Meanwhile, an increase of about 10 W m-2 was detected both for heat flux in soil and sensible heat on land surface, which is not neglectable to the short-term climate change. The results show that considerable response in land surface energy budget could be expected when the soil thermal forcing reaches a certain spatial-tem poral scale. Therefore, land surface models should not ignore the upward heat flux from the bottom of the soil layer. Moreover, integration for a longer period of time and coupled land-atmosphere model are also necessary for the better understanding of this issue.  相似文献   

18.
In June 1991 the EFEDA-field experiment (ECHIVAL Field Experiment in a Desertification-Threatened Area) was carried out in the Spanish province Castilla-La Mancha, to improve the understanding of the interactions between the soil, the vegetation and the atmosphere.Here results of energy balance studies at the Barrax site are given, one of the three intensively studied experimental sites within Castilla-La Mancha. This area is characterized by a large fraction of irrigated fields (40%) while the remaining 60% was fallow land at the end of June 1991. The energy balances over these two characteristic land-use classes totally differ. While for the irrigated fields the evapotranspiration is dominant, for the non-irrigated fields the sensible and the soil heat fluxes dominate and the latent heat flux is nearly negligible.In order to achieve areally averaged turbulent fluxes, surface, SODAR and aircraft data have been used. Comparing the surface fluxes from all three facilities, it can be found that:The sensible heat flux estimation from SODAR (w-method) gives reliable results when a calibration of w is done with another independent system (e.g. aircraft).Aircraft measurements in conjunction with energy budget methods yield surface fluxes of sensible heat, which are about 20% lower than the areally averaged values calculated by the surface measurements. The areally averaged latent heat fluxes from aircraft and surface measurements agree better than the sensible heat fluxes.  相似文献   

19.
利用"内蒙古微气象观测蒸发试验"的观测资料,对6种地表土壤热通量计算方法(Plate Cal法、TDEC法、谐波法、热传导对流法、振幅法和相位法)进行比较,检验了6种方法在不同干湿地表状况下的适用性,并研究了6种方法计算地表土壤热通量的差异以及对地表能量闭合度的影响。结果表明:一般情况下,Plate Cal法计算的2 cm土壤热通量与观测值最接近,计算结果的均方差为6.9 W/m2。在不同干湿地表状况下,干燥和降水条件下适合使用Plate Cal法,计算结果的均方差分别为14.0 W/m2和30.1 W/m2;湿润条件下适合使用谐波法,计算结果的均方差为21.4 W/m2。6种方法计算的地表土壤热通量存在明显差别,最大相差178.6 W/m2,不同方法计算地表土壤热通量的最大差值超过25 W/m2的时次占样本的96.3%。不同方法计算地表土壤热通量的差异对地表能量闭合度的大小有明显影响,但不影响近地层能量闭合度随湍流混合增强而增大的规律。  相似文献   

20.
The snow cover extent in mid-high latitude areas of the Northern Hemisphere has significantly declined corresponding to the global warming, especially since the 1970s. Snow-climate feedbacks play a critical role in regulating the global radiation balance and influencing surface heat flux exchange. However, the degree to which snow cover changes affect the radiation budget and energy balance on a regional scale and the difference between snow-climate and land use/cover change (LUCC)-climate feedbacks have been rarely studied. In this paper, we selected Heilongjiang Basin, where the snow cover has changed obviously, as our study area and used the WRF model to simulate the influences of snow cover changes on the surface radiation budget and heat balance. In the scenario simulation, the localized surface parameter data improved the accuracy by 10 % compared with the control group. The spatial and temporal analysis of the surface variables showed that the net surface radiation, sensible heat flux, Bowen ratio, temperature and percentage of snow cover were negatively correlated and that the ground heat flux and latent heat flux were positively correlated with the percentage of snow cover. The spatial analysis also showed that a significant relationship existed between the surface variables and land cover types, which was not obviously as that for snow cover changes. Finally, six typical study areas were selected to quantitatively analyse the influence of land cover types beneath the snow cover on heat absorption and transfer, which showed that when the land was snow covered, the conversion of forest to farmland can dramatically influence the net radiation and other surface variables, whereas the snow-free land showed significantly reduced influence. Furthermore, compared with typical land cover changes, e.g., the conversion of forest into farmland, the influence of snow cover changes on net radiation and sensible heat flux were 60 % higher than that of land cover changes, indicating the importance of snow cover changes in the surface-atmospheric feedback system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号